-
公开(公告)号:US20220181513A1
公开(公告)日:2022-06-09
申请号:US17539345
申请日:2021-12-01
Applicant: The Regents of the University of California
Inventor: Erin C. Young , Benjamin P. Yonkee , John T. Leonard , Tal Margalith , James S. Speck , Steven P. DenBaars , Shuji Nakamura
IPC: H01L33/00 , H01L33/32 , H01L33/14 , H01L21/00 , H01L31/0304 , C30B23/02 , H01L21/02 , C30B29/68 , H01S5/40 , C30B25/20 , H01L33/04 , C30B29/40 , H01S5/30 , H01L31/147 , H01L33/06
Abstract: A hybrid growth method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and ammonia-assisted or plasma-assisted molecular beam epitaxy (MBE) to grow one or more tunnel junctions. Unlike p-type gallium nitride (p-GaN) grown by MOCVD, p-GaN grown by MBE is conductive as grown, which allows for its use in a tunnel junction. Moreover, the doping limits of MBE materials are higher than MOCVD materials. The tunnel junctions can be used to incorporate multiple active regions into a single device. In addition, n-type GaN (n-GaN) can be used as a current spreading layer on both sides of the device, eliminating the need for a transparent conductive oxide (TCO) layer or a silver (Au) mirror.
-
公开(公告)号:US20180374699A1
公开(公告)日:2018-12-27
申请号:US15773864
申请日:2016-11-01
Applicant: The Regents of the University of California
Inventor: Benjamin P. Yonkee , Erin C. Young , John T. Leonard , Tal Margalith , James S. Speck , Steven P. DenBaars , Shuji Nakamura
IPC: H01L21/02 , H01L29/15 , H01L29/20 , H01L29/207 , H01L29/36 , H01L29/885 , H01L31/18 , H01L31/0352 , H01L31/0304 , H01L33/00 , H01L33/06 , H01L33/32
CPC classification number: H01L21/02584 , H01L21/02389 , H01L21/02458 , H01L21/02505 , H01L21/0254 , H01L21/02576 , H01L21/02579 , H01L21/02581 , H01L21/0262 , H01L21/02631 , H01L29/15 , H01L29/2003 , H01L29/207 , H01L29/365 , H01L29/88 , H01L29/885 , H01L31/03044 , H01L31/035236 , H01L31/1856 , H01L33/0075 , H01L33/04 , H01L33/06 , H01L33/32
Abstract: A III-nitride tunnel junction with a modified p-n interface, wherein the modified p-n interface includes a delta-doped layer to reduce tunneling resistance. The delta-doped layer may be doped using donor atoms comprised of Oxygen (O), Germanium (Ge) or Silicon (Si); acceptor atoms comprised of Magnesium (Mg) or Zinc (Zn); or impurities comprised of Iron (Fe) or Carbon (C).
-
公开(公告)号:US10685835B2
公开(公告)日:2020-06-16
申请号:US15773864
申请日:2016-11-01
Applicant: The Regents of the University of California
Inventor: Benjamin P. Yonkee , Erin C. Young , John T. Leonard , Tal Margalith , James S. Speck , Steven P. DenBaars , Shuji Nakamura
IPC: H01L21/00 , H01L29/00 , H01L31/18 , H01L33/00 , H01L21/02 , H01L29/15 , H01L29/20 , H01L29/207 , H01L29/36 , H01L29/885 , H01L31/0304 , H01L31/0352 , H01L33/06 , H01L33/32 , H01L29/88 , H01L33/04
Abstract: A III-nitride tunnel junction with a modified p-n interface, wherein the modified p-n interface includes a delta-doped layer to reduce tunneling resistance. The delta-doped layer may be doped using donor atoms comprised of Oxygen (O), Germanium (Ge) or Silicon (Si); acceptor atoms comprised of Magnesium (Mg) or Zinc (Zn); or impurities comprised of Iron (Fe) or Carbon (C).
-
公开(公告)号:US11217722B2
公开(公告)日:2022-01-04
申请号:US15743023
申请日:2016-07-11
Applicant: The Regents of the University of California
Inventor: Erin C. Young , Benjamin P. Yonkee , John T. Leonard , Tal Margalith , James S. Speck , Steven P. DenBaars , Shuji Nakamura
IPC: H01L21/02 , H01L33/00 , H01L33/32 , H01L33/14 , H01L21/00 , H01L31/0304 , C30B23/02 , C30B29/68 , H01S5/40 , C30B25/20 , H01L33/04 , C30B29/40 , H01S5/30 , H01L31/147 , H01L33/06 , H01S5/026 , H01S5/183 , H01S5/343
Abstract: A hybrid growth method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and ammonia-assisted or plasma-assisted molecular beam epitaxy (MBE) to grow one or more tunnel junctions. Unlike p-type gallium nitride (p-GaN) grown by MOCVD, p-GaN grown by MBE is conductive as grown, which allows for its use in a tunnel junction. Moreover, the doping limits of MBE materials are higher than MOCVD materials. The tunnel junctions can be used to incorporate multiple active regions into a single device. In addition, n-type GaN (n-GaN) can be used as a current spreading layer on both sides of the device, eliminating the need for a transparent conductive oxide (TCO) layer or a silver (Au) mirror.
-
公开(公告)号:US20210104504A1
公开(公告)日:2021-04-08
申请号:US16325709
申请日:2017-08-17
Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
Inventor: Benjamin P. Yonkee , Erin C. Young , Charles Forman , John T. Leonard , SeungGeun Lee , Dan Cohen , Robert M. Farrell , Michael Iza , Burhan Saifaddin , Abdullah Almogbel , Humberto Foronda , James S. Speck , Steven P. DenBaars , Shuji Nakamura
Abstract: A flip chip III-Nitride LED which utilizes a dielectric coating backed by a metallic reflector (e.g., aluminum or silver). High reflectivity and low resistance contacts for optoelectronic devices. Low ESD rating optoelectronic devices. A VCSEL comprising a tunnel junction for current and optical confinement.
-
公开(公告)号:US20190074404A1
公开(公告)日:2019-03-07
申请号:US15743023
申请日:2016-07-11
Applicant: The Regents of the University of California
Inventor: Erin C. Young , Benjamin P. Yonkee , John T. Leonard , Tal Margalith , James S. Speck , Steven P. DenBaars , Shuji Nakamura
IPC: H01L33/00 , H01L33/06 , H01L33/32 , H01L31/147
Abstract: A hybrid growth method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and ammonia-assisted or plasma-assisted molecular beam epitaxy (MBE) to grow one or more tunnel junctions. Unlike p-type gallium nitride (p-GaN) grown by MOCVD, p-GaN grown by MBE is conductive as grown, which allows for its use in a tunnel junction. Moreover, the doping limits of MBE materials are higher than MOCVD materials. The tunnel junctions can be used to incorporate multiple active regions into a single device. In addition, n-type GaN (n-GaN) can be used as a current spreading layer on both sides of the device, eliminating the need for a transparent conductive oxide (TCO) layer or a silver (Au) mirror.
-
-
-
-
-