Abstract:
A method of embedding tungsten into a recess formed on a substrate, the method includes forming a lower tungsten layer by supplying a fluorine-free tungsten precursor gas containing a tungsten compound that does not contain fluorine atoms to a top surface of an aluminum oxide layer formed inside the recess, and embedding tungsten into the recess by supplying a tungsten precursor gas containing a tungsten compound that contains fluorine atoms to a top surface of the lower tungsten layer to form a main tungsten layer.
Abstract:
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.
Abstract:
A method of forming a germanium thin film on an underlying film includes forming a germanium seed layer by absorbing a germanium on a surface of the underlying film using an aminogermane-based gas, and forming a germanium thin film on the germanium seed layer using a germane-based gas.
Abstract:
A film forming method includes a step of disposing a substrate on which an insulating film is formed in a processing container and forming a base film by repeatedly supplying a Ti-containing gas, an Al-containing gas, and a reaction gas into the processing container under a decompressed atmosphere; and a step of forming a metal layer made of a metal material on the substrate on which the base film is formed.
Abstract:
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.
Abstract:
A method of forming a germanium thin film on an underlying film includes forming a germanium seed layer by absorbing a germanium on a surface of the underlying film using an aminogermane-based gas, and forming a germanium thin film on the germanium seed layer using a germane-based gas.
Abstract:
A film forming apparatus includes: a substrate holding member for vertically holding target substrates at predetermined intervals in multiple stages; a process vessel for accommodating the substrate holding member; a processing gas introduction member each having gas discharge holes which discharge a processing gas for film formation in a direction parallel to each target substrate and introduce the processing gas into the process vessel; an exhaust mechanism for exhausting the interior of the process vessel; and a plurality of gas flow adjustment members installed to face the target substrates, respectively. Each of the gas flow adjustment members adjusts a gas flow of the processing gas discharged horizontally above each of the target substrates from the gas discharge holes of the processing gas introduction member, to be directed from above the respective target substrate located below the respective gas flow adjustment member toward the surface of the respective target substrate.
Abstract:
There is provided a boron film forming method which includes forming a boron film on a target substrate by CVD by supplying a boron-containing gas as a film-forming source gas to the target substrate while heating the target substrate to a predetermined temperature, the boron film being made of boron and inevitable impurities and used for a semiconductor device.
Abstract:
Provided is a method of controlling a gas supply apparatus including a vaporizer, a carrier gas supply source and a gas supply line, the method including: supplying a liquid or sold raw material to a raw material container included in a vaporizer; vaporizing the liquid or sold raw material in the raw material container to produce a raw material gas; exhausting an interior of the raw material container having the liquid or sold raw material; supplying a carrier gas from the carrier gas supply source to the raw material container; and flowing the raw material gas and the carrier gas from the raw material container to a processing chamber in which a substrate to be processed is accommodated via the gas supply line.
Abstract:
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.