Abstract:
Provided is a resonator of a hybrid laser diode. The resonator includes: a substrate including a semiconductor layer where a hybrid waveguide, a multi-mode waveguide, and a single mode waveguide are connected in series; a compound semiconductor waveguide, provided on the hybrid waveguide of the semiconductor layer, having a tapered coupling structure at one end of the compound semiconductor waveguide, the tapered coupling structure overlapping the multi-mode waveguide partially; and a reflection part provided on one end of the single mode waveguide. The multi-mode waveguide has a narrower width than the hybrid waveguide and the single mode waveguide has a narrower width than the multi-mode waveguide.
Abstract:
Provided is a mask pattern for selective area growth of a semiconductor layer and a selective area growth method for a semiconductor layer for independently controlling a growth rate and a strain of the semiconductor layer. The selective area growth method includes: forming a plurality of pairs of first mask patterns, the first mask patterns in each pair including a first open area therebetween, the first open area having a width that is wider than a distance causing overgrowth of the semiconductor layer, the pairs of the first mask patterns repeatedly arranged with a period P therebetween; wherein controlling a growth rate and a strain of the semiconductor layer formed on the first open area by adjusting the period P.
Abstract:
Provided are a hybrid laser diode for single mode operation, and a method for manufacturing the hybrid laser diode. The hybrid laser diode includes a silicon layer, an active pattern disposed on the silicon layer, and a bonding layer disposed between the silicon layer and the active pattern. Here, the bonding layer includes diffraction patterns constituting a Bragg grating.
Abstract:
Provided are a superluminescent diode with a high optical power and a broad wavelength band, and a method of fabricating the same. The superluminescent diode includes: at least one high optical confinement factor (HOCF) region; and at least one low optical confinement factor (LOCF) region having a lower optical confinement factor than the HOCF region. The method includes obtaining a difference of optical confinement factors in the HOCF region and the LOCF region through a selective area growth method, the selective area growth method using a deposition thicknesses difference of thin layers according to a width difference of openings that expose a substrate.
Abstract:
Provided is a hybrid laser diode. The hybrid laser diode includes: a silicon layer constituting a slab waveguide; and a compound semiconductor layer disposed on the silicon layer to constitute a channel waveguide.
Abstract:
Provided is a hybrid laser diode. The hybrid laser diode includes: a silicon layer constituting a slab waveguide; and a compound semiconductor layer disposed on the silicon layer to constitute a channel waveguide.
Abstract:
Provided are an optical coupler, which can improve miniaturization and integration, and an active optical module comprising the same. The optical coupler comprises a hollow optical block having a through hole formed to pass an optical fiber therethrough. The hollow optical block comprises at least one incidence plane, at least one internal reflection plane, and at least one tapering region. The incidence plane is disposed at the bottom of the hollow optical block, which is parallel to the through hole, to incident-transmit light. The internal reflection plane is disposed at the top of the hollow optical block, which is opposite to the incidence plane, to reflect the light, which is received from the incidence plane, into the hollow optical block. The tapering region is configured to concentrate the light on the optical fiber in the through hole. The tapering region is formed such that the outer diameter of the hollow optical block decreases away from the internal reflection plane and the incidence plane.
Abstract:
A system for accessing a node of a private network includes an assigning portion for assigning external port values to respective network nodes based on information collected from the network nodes of the private network, and storing the assigned external port values; an exchanging portion for exchanging the external port values of the respective network nodes of private networks; and an address converting portion for converting the external port values into corresponding private IP addresses and internal port values when a network node of one private network accesses another network node of another private network by using the external port values of another network node of another private network. Accordingly, a network node of a private network without a global IP address becomes accessible.
Abstract:
To program in a nonvolatile memory device include a plurality of memory cells that are programmed into multiple states through at least two program steps, a primary program is performed from an erase level to a first target level with respect to the memory cells coupled to a selected word line A preprogram is performed from the erase level to a preprogram level in association with the primary program with respect to the memory cells coupled to the selected word line, where the preprogram level is larger than the erase level and smaller than the first target level A secondary program is performed from the preprogram level to a second target level with respect to the preprogrammed memory cells coupled to the selected word line.
Abstract:
A method is provided for reading data in a nonvolatile memory device. The method includes performing a first read operation on multiple multi-level memory cells (MLCs), performing a first sensing operation on at least one flag cell corresponding to the MLCs, selectively performing a second read operation on the MLCs based on a result of the first sensing operation, and performing a second sensing operation on the at least one flag cell when the second read operation is performed. Read data is output based on results of the first read operation and the first sensing operation when the second read operation is not performed, and the read data is output based on result of the first read operation, the first sensing operation, the second read operation and the second sensing operation when the second read operation is performed. The read data corresponds to programmed data in the MLCs.