Abstract:
A fuel supply device includes: a linear actuator; a reciprocating pump having a boosting piston driven by the linear actuator and configured to reciprocate in an axial direction, the reciprocating pump being configured to suck the fuel when the boosting piston moves in a first direction and configured to boost and eject the fuel when the boosting piston moves in a second direction; and a controller configured to control driving of the linear actuator so as to adjust an amount of the fuel ejected from a boosting cylinder per reciprocating time by adjusting a ratio of a fuel ejection time and a fuel suction time of the reciprocating pump without changing the reciprocating time of the boosting piston in accordance with a load of the internal combustion engine. The adjustment adjusts a stroke length of the boosting piston and a moving speed of the boosting piston in the second direction.
Abstract:
A method for operating a reagent metering system which meters a reagent into an exhaust duct of an internal combustion engine upstream of an SCR catalytic converter, in which, after the metering operation is ended, at least part of the reagent metering system is emptied by back-suction by means of a reciprocating pump. The procedure according to the invention is distinguished in that during the back-suction, a stop determination determines the flight time of a reciprocating piston of the reciprocating pump from a starting time as far as the stop time, in that a comparator compares the flight time determined with a flight time threshold value, and in that the activation power of the reciprocating pump is reduced if the flight time determined is less than the flight time threshold value.
Abstract:
In at least some embodiments, an electrical system for a pump includes a power supply and a controller coupled to the power supply, the controller supporting a plurality of pump cycle levels. If a voltage of the power supply drops below a first threshold, the controller automatically causes the pump to operate at a lower pump cycle level.
Abstract:
A compressor having a sensorless motor and a driving method thereof. The compressor includes a sensorless motor having a rotation shaft connected to a rotator, a piston for performing a compression stroke and an intake stroke between a top dead center and a bottom dead center thereof, and a crank connecting the rotation shaft to the piston. The method includes forcibly aligning the rotator such that the rotator is positioned at a start position in the intake stroke of the piston, and accelerating rotation of the forcibly aligned rotator.
Abstract:
To avoid deposits on the restrictor that channels extractant into a collector, a heated capillary tube pressure release restrictor, has a thermally insulated outlet end in a collecting trap substantially colder than the capillary tube. The restrictor is heated between the insulation and the capillary tube by Joulean heating. The solvent in the trap is at a pressure of 5 to 200 psi above atmospheric pressure. The thermal resistance of the insulation is selected to reduce the heat added to the extractant to a minimum and yet cause the temperature of the extractant to be in a range within which it is sufficiently hot so it does not freeze when added to the collection solvent but not so hot as to reduce partitioning of the extract and extractant before the extractant leaves the collection solvent. It has a thermal conductivity no greater than 60 BTU's per hour, per square foot, per inch for a one degree Fahrenheit difference.
Abstract:
A sensorless method and apparatus for detecting piston collisions in a free piston linear compressor motor. The waveform of the back EMF induced in the motor stator windings is analysed for slope discontinuities and other aberrations in a time window centred on the back EMF zero-crossings. Waveform slope artefacts are indicative of piston collisions and cause the motor power to be decremented in response.
Abstract:
In at least some embodiments, an electrical system for a pump includes a power supply and a controller coupled to the power supply, the controller supporting a plurality of pump cycle levels. If a voltage of the power supply drops below a first threshold, the controller automatically causes the pump to operate at a lower pump cycle level
Abstract:
In a piston pump for pumping liquid carbon dioxide at a temperature below 30 degrees Fahrenheit and pressures at least as high as 7500 psi, the volume leaving the pump is determined by measuring only pressure or other parameter related to flow and movement of the plunger. The position of the piston is measured and the resulting displacement is integrated to determine volume of fluid pumped.
Abstract:
To avoid deposits on the restrictor that channels extractant into a collector, a heated capillary tube pressure release restrictor, has a thermally insulated outlet end in a collecting trap substantially colder than the capillary tube. The restrictor is heated between the insulation and the capillary tube by Joulean heating. The solvent in the trap is at a pressure of 5 to 200 psi above atmospheric pressure. The thermal resistance of the insulation is selected to reduce the heat added to the extractant to a minimum and yet cause the temperature of the extractant to be in a range within which it is sufficiently hot so it does not freeze when added to the collection solvent but not so hot as to reduce partitioning of the extract and extractant before the extractant leaves the collection solvent. It has a thermal conductivity no greater than 60 BTU's per hour, per square foot, per inch for a one degree Fahrenheit difference.
Abstract:
The present invention is a sludge pump system which includes a means for monitoring operation of a sludge pump. The sludge pump includes a material cylinder and a piston moveable in the material cylinder. A pump drive moves the piston during working cycles which include a pumping stroke and a filling stroke. A pump valve mechanism connects the material cylinder to an outlet during pumping strokes and connects the material cylinder to an inlet during filling strokes. A means for monitoring operation of the pump is provided. The means for monitoring includes a means for sensing a first parameter related to operation of the pump drive, a means for sensing a second parameter indicative of operation of the piston, and a means for determining errors in the operation of the pump based upon the first parameter and the second parameter.