Abstract:
In an embodiment, a method includes forming a first diamond layer on a substrate and inducing a layer of graphene from the first diamond layer by heating the substrate and the first diamond layer. The method includes forming a second diamond layer on top of the layer of graphene and applying a mask to the second diamond layer. The mask includes a shape of a cathode, an anode, and one or more grids. The method further includes forming a two-dimensional cold cathode, a two-dimensional anode, and one or more two-dimensional grids by reactive-ion electron-beam etching. Each of the two-dimensional cold cathode, the two-dimensional anode, and the one or more two-dimensional grids includes a portion of the first diamond layer, the graphene layer, and the second diamond layer such that the graphene layer is positioned between the first diamond layer and the second diamond layer.
Abstract:
Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
Abstract:
Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
Abstract:
A method of manufacturing a field emission electrode includes humidification processing to absorb water at a surface of an electron emission film emitting electrons as a result of application of a voltage, and voltage application processing to apply an aging voltage between the humidified electron emission film and an electrode provided facing the electron emission film.
Abstract:
An object is to provide an electron emitting cathode achieving high luminance, low energy dispersion, and long life. It is therefore an object to provide a diamond electron emitting cathode graspable on a sufficiently stable basis, sharpened at the tip, and improved in electric field intensity. A diamond electron emitting cathode 110 according to the present invention is partitioned into at least three regions, i.e., a front end region 203 intended for electron emission at a tip of columnar shape, a rear end region 201 intended for grasping opposite in the longitudinal direction, and a thinned intermediate region 202, a cross-sectional area of the rear end region is not less than 0.2 mm2, the tip of the front end region is sharpened, and a maximum cross-sectional area of the thinned intermediate region is not more than 0.1 mm2.
Abstract:
A cold-cathode electron source is formed that successfully achieves a high frequency and a high output. Embodiments include a cold-cathode electron source comprising emitters having a tip portion tapered at an aspect ratio R of not less than 4, thereby decreasing capacitance between the emitters and a gate electrode by a degree of declination from the gate electrode, such that the cold-cathode electron source is able to operate at a high frequency. Embodiments also include a cold-cathode electron source formed of a diamond with a high melting point and a high thermal conductivity, such that the emitters operate at a high current density and at a high output.
Abstract:
Diamond-like carbon based thermoelectric conversion devices and methods of making and using the same, which have improved conversion efficiencies and increased reliability. The device can include a cathode having a base member with a layer of diamond-like carbon material such as amorphous diamond coated over the cathode. A dielectric intermediate member can be electrically coupled between the diamond-like carbon material and an anode. Various additional layers and configurations can allow for improved performance such as multiple cathode layers and/or multiple intermediate layers. The thermoelectric conversion devices can be configured as an electrical generator and/or a cooling device and can be conveniently formed. In addition, the devices of the present invention do not require formation of a vacuum space and are typically completely solid throughout. As a result, the devices of the present invention are susceptible to mass production at reduced costs and have improved conversion efficiencies and reliability.
Abstract:
A method for production includes a step for forming concave molds on a surface of a substrate and a step for growing a diamond heteroepitaxially on the substrate in an atmosphere containing a doping material. The crystal structure of the slope of the concave molds of the substrate can have the cubic system crystal orientation (111), and the doping material is phosphorous. Further, the substrate is Si, and the slope of the molds can be the Si(111) face. The diamond electron emission device contains projection parts on the surface thereof, where a slope of the projection parts 1 contains a diamond (111) face, and flat parts 2, which are not the projection parts, contain face orientations other than (100) face or (110) face and grain boundaries.
Abstract:
Novel heterodiamondoid-containing field emission devices (FED's) are disclosed herein. In one embodiment of the present invention, the heteroatom of the heterodiamondoid comprises an electron-donating species (such as nitrogen) as part of the cathode or electron-emitting component of the field emission device.
Abstract:
Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, thermally conductive adhesive films, and thermally conductive films in thermoelectric cooling devices. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane. The diamondoid-containing material may be fabricated as a diamondoid-containing polymer, a diamondoid-containing sintered ceramic, a diamondoid ceramic composite, a CVD diamondoid film, a self-assembled diamondoid film, and a diamondoid-fullerene composite.