Abstract:
An exemplary system comprises a power regulator and an emitting apparatus. The emitting apparatus is typically attached to or integrated with a display object, such as a merchandise package or container. A support structure, such as a point of purchase display, typically contains or supports one or more power regulators and display objects. The power regulator comprises a controller and a primary inductor, and the controller is adapted to provide a voltage or current to the primary inductor to generate a first primary inductor voltage. The emitting apparatus comprises an illumination source and a secondary inductor coupled to the illumination source. The illumination source is adapted to emit visible light when the power regulator is in an on state and when the secondary inductor is within a predetermined distance of the primary inductor. In exemplary embodiments, the first and second inductors are substantially planar.
Abstract:
The various embodiments of the invention provide an addressable or a static emissive display comprising a plurality of layers, including a first substrate layer, wherein each succeeding layer is formed by printing or coating the layer over preceding layers. Exemplary substrates include paper, plastic, rubber, fabric, glass, ceramic, or any other insulator or semiconductor. In an exemplary embodiment, the display includes a first conductive layer attached to the substrate and forming a first plurality of conductors; various dielectric layers; an emissive layer; a second, transmissive conductive layer forming a second plurality of conductors; a third conductive layer included in the second plurality of conductors and having a comparatively lower impedance; and optional color and masking layers. Pixels are defined by the corresponding display regions between the first and second plurality of conductors. Various embodiments are addressable, have a substantially flat form factor with a thickness of 1-3 mm, and are also scalable virtually limitlessly, from the size of a mobile telephone display to that of a billboard.
Abstract:
The various embodiments of the invention provide an addressable or a static emissive display comprising a plurality of layers, including a first substrate layer, wherein each succeeding layer is formed by printing or coating the layer over preceding layers. Exemplary substrates include paper, plastic, rubber, fabric, glass, ceramic, or any other insulator or semiconductor. In an exemplary embodiment, the display includes a first conductive layer attached to the substrate and forming a first plurality of conductors; various dielectric layers; an emissive layer; a second, transmissive conductive layer forming a second plurality of conductors; a third conductive layer included in the second plurality of conductors and having a comparatively lower impedance; and optional color and masking layers. Pixels are defined by the corresponding display regions between the first and second plurality of conductors. Various embodiments are addressable, have a substantially flat form factor with a thickness of 1-3 mm, and are also scalable virtually limitlessly, from the size of a mobile telephone display to that of a billboard.
Abstract:
The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
Abstract:
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
Abstract:
A light emitting structure uses an extruded mixture of a fluorescent material and a transparent plastic to form a thin flexible substrate. The extrusion, using a slot die, forms a thin flexible film having very smooth surfaces with a uniform thickness. A transparent first conductive layer is then printed over the substrate. Pre-formed micro-LEDs are then printed over the first conductive layer, where the bottom electrodes of the LEDs contact the first conductive layer. A dielectric layer is deposited between the LEDs and exposes the top electrode of the LEDs. A second conductive layer, which may be transparent or reflective, is printed over the LEDs to electrically connect at least some of the LEDs in parallel. Primary light emitted from the LEDs energizes the fluorescent material in the substrate to emit secondary light from the substrate. Blue LED light may combine with the secondary light to create a wide gamut of colors, such as white.
Abstract:
An LED sticker is disclosed that receives an NFC transmission from a nearby smartphone to energize LEDs in the sticker. A spiral (or loop) antenna is used in the sticker to generate power from the NFC transmission. The NFC signal is at 13.56 MHz, which is the resonant frequency of the NFC antenna circuit in the smartphone. The LED portion is formed by sandwiching pre-formed microscopic LEDs between two conductive layers to connect the LEDs in parallel. The conductive layers form a relatively large integral capacitor that is used to achieve the 13.56 MHz resonant frequency. So no additional capacitor is needed in the circuit to achieve a resonance of 13.56 MHz. This greatly reduces the design requirements of the antenna. The LED sticker may also contain an NFC tag having its own independent loop antenna and NFC chip. Various practical applications of the LED sticker are disclosed.
Abstract:
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
Abstract:
A programmable circuit includes an array of printed groups of microscopic transistors or diodes having pn junctions. The devices are pre-formed and printed as an ink and cured. The devices have a proper orientation and a reverse orientation after settling on a conductor layer. The devices are connected in parallel within small groups. To neutralize the reverse-oriented devices, a sufficient voltage is applied across the parallel-connected diodes to forward bias only the devices having the reverse orientation. This causes a sufficient current to flow through each of the reverse-orientated devices to destroy an electrical interface between an electrode of the devices and the conductor layer to create an open circuit, such that those devices do not affect a rectifying function of the devices in the group having the proper orientation. An interconnection conductor pattern may then interconnect the groups to form complex logic circuits.
Abstract:
Printed micro-LEDs have a top metal anode electrode that is relatively tall and narrow and a bottom cathode electrode. After the LED ink is cured, the bottom electrodes are in electrical contact with a conductive layer on a substrate. The locations of the LEDs are random. A thin dielectric layer is then printed between the LEDs, and a thin conductive layer, such as a nano-wire layer, is then printed over the dielectric layer to contact the anode electrodes. The top conductive layer over the tall anode electrodes has bumps corresponding with the locations of the LEDs. An omniphobic liquid is then printed which only resides in the “low” areas of the top conductive layer between the bumps. Any optical material is then uniformly printed over the resulting surface. The printed optical material accumulates only on the bump areas by adhesion and surface tension, so is self-aligned with the individual LEDs.