Abstract:
An integrated circuit includes a first PMOS transistor, where its drain is arranged to be coupled to a voltage output, and its source is coupled to the drain of a second PMOS transistor. The source of the second PMOS transistor is arranged to be coupled to a high power supply voltage. The source and drain of a MOS capacitor are coupled to the source of the first PMOS transistor. The drain of an NMOS transistor is coupled to the drain of the first PMOS transistor. The integrated circuit is configured to receive a voltage input to generate the voltage output having a maximum voltage higher than the voltage input. The gate oxide layer thickness of the MOS capacitor is less than that of the first PMOS transistor.
Abstract:
A method of designing an integrated circuit includes providing a cell library including a first and second cell structures. The cell structures each include a dummy gate electrode disposed on a boundary. An edge gate electrode is disposed adjacent to the dummy gate electrode. An oxide definition (OD) region has an edge disposed between the edge gate electrode and the dummy gate electrode. The method includes determining if the cell structures are to be abutted with each other. If so, the method includes abutting the cell structures. If not so, the method includes increasing areas of portions of the OD regions between the edge gate electrodes and the dummy gate electrodes.
Abstract:
An integrated circuit includes an inductor-capacitor (LC) tank circuit coupled with a feedback loop. The LC tank circuit is configured to output an output signal having a peak voltage that is substantially equal to a direct current (DC) voltage level plus an amplitude. The feedback loop is capable of determining if the peak voltage of the output signal falls within a range between a first voltage level and a second voltage level for adjusting the amplitude of the output signal.
Abstract:
An energy harvesting system includes a plurality of transducers. The transducers are configured to generate direct current (DC) voltages from a plurality of ambient energy sources. A sensor control circuit has a plurality of sensors configured to detect the DC signals from the plurality of transducers. A DC-to-DC converter is configured to supply an output voltage. A plurality of switches, each switch coupled between the DC-to-DC converter and a corresponding transducer of the plurality of transducers. The sensor control circuit enables one switch of the plurality of switches and disables the other switches of the plurality of switches based on a priority criterion.
Abstract:
A level shifter includes one PMOS and two NMOS transistors. A source of the first NMOS transistor is coupled to a low power supply voltage. An input signal is coupled to a gate of the first NMOS transistor and a source of the second NMOS transistor. The input signal has a voltage level up to a first power supply voltage. A source of the PMOS transistor is coupled to a second power supply voltage, higher than the first power supply voltage. An output signal is coupled between the PMOS and the first NMOS transistors. The first NMOS transistor is arranged to pull down the output signal when the input signal is a logical 1, and the second NMOS transistor is arranged to enable the PMOS transistor to pull up the output signal to a logical 1 at the second power supply voltage when the input signal is a logical 0.
Abstract:
Some embodiments regard a circuit comprising: a high voltage transistor providing a resistance; an amplifier configured to receive a current and to convert the current to a first voltage that is used in a loop creating the current; and an automatic level control circuit that, based on an AC amplitude of the first voltage, adjusts a second voltage at a gate of the high voltage transistor and thereby adjusts the resistance and the first voltage; wherein the automatic level control circuit is configured to adjust the first voltage toward the first reference voltage if the first voltage differs from a first reference voltage.
Abstract:
An integrated circuit includes an inductor-capacitor (LC) tank circuit coupled with a feedback loop. The LC tank circuit is configured to output an output signal having a peak voltage that is substantially equal to a direct current (DC) voltage level plus an amplitude. The feedback loop is capable of determining if the peak voltage of the output signal falls within a range between a first voltage level and a second voltage level for adjusting the amplitude of the output signal.
Abstract:
A novel transistor with a low resistance ultra shallow tip region and its method of fabrication. The novel transistor of the present invention has a source/drain extension or tip comprising an ultra shallow region which extends beneath the gate electrode and a raised region.
Abstract:
A method of forming a thin, robust nitrided oxide layer. The process results in a manufacturable, uniform, low-defect density, reliable nitrided oxide that may be used as a gate dielectric, as a portion of a spacer, or as a portion of a trench isolation. First, a substrate is oxidized in a chlorinated dry oxidation followed by a low temperature pyrogenic steam oxidation. Next, a low temperature ammonia anneal is performed, followed by a high temperature anneal in an inert ambient.
Abstract:
A new method of isolating a polysilicon emitter from the base region of a bipolar transistor, trenching the polysilicon emitter into the semiconductor substrate, and maintaining a consistent base width of a bipolar transistor independent of variations in emitter mask thicknesses is disclosed. The polysilicon emitter isolation provides for better electrical breakdown characteristics between the emitter and the base by protecting the dielectric layer between the polysilicon emitter and base regions from defects and contamination associated with the BiCMOS manufacturing environment. The polysilicon emitter is trenched into the semiconductor substrate in order to reduce transistor operation problems associated with hot electron injection. Consistent base widths improve transistor performance uniformity thereby improving manufacturability and reliability.