Abstract:
The invention relates to a galvanic cell (1) substantially prismatic in design, comprising an electrode stack (2) having at least one anode (3, 3a), one cathode (4, 4a), and one separator. The separator (5) is provided for at least partially receiving an electrolyte. The galvanic cell further comprises at least two housing parts (6, 7) at least partially enclosing the electrode stack. At least one assembly seam (8, 8a) connects the at least two housing parts at least in parts. The galvanic cell is characterized in that the at least one assembly seam is elastic in design.
Abstract:
The invention relates to a battery receiving device comprising a battery receiving chamber and a wall at least partially enclosing the battery receiving chamber. The battery receiving device further comprises a closable first opening associated with the wall. The battery receiving device further comprises a battery holding device provided for holding at least one battery. The battery receiving device according to the invention is characterized in that the battery holding device thereof is configured such that the at least one battery is released under predetermined conditions.
Abstract:
The invention relates to an electrode coil (3) having a substantially cylindrical shape, comprising at least: one anodic electrode (5), one cathodic electrode (6), and one separator (4) disposed at least partially between said electrodes (5, 6), characterized in that the separator (4) is produced from a material comprising at least one component made of a ceramic material.
Abstract:
The invention relates to a contacting element (1) for electrically connecting a contact connection (18) of an electric cell, in particular a battery cell (22), comprising at least one deformation section (2) and at least two clamping edges (9) which are each supported at opposing end sections (4) of the at least one deformation section (2).
Abstract:
A protective unit for galvanic cells, which are interconnected into a battery by way of contact elements that are connected in a suitable manner to pole connections of said cells, can be associated with individual cells of a battery. The protective unit comprises an activation unit (1008, 1108, 1208, 1011, 1111) for the activation thereof. When the protective unit is activated, said protective unit bypasses the associated cell by changing the interconnection and thus takes it electrically out of the battery assembly.
Abstract:
Control apparatus for operating a rechargeable energy storage device and for collecting operating data, as well as a method for operating such a control apparatus. The invention is described with reference to the use in a motor vehicle and to the control of the rechargeable energy storage device thereof for the supply of the electric drive of the motor vehicle. However, it should be noted that an apparatus having the features of the claims can operate rechargeable energy storage devices also independently of motor vehicles, or in stationary use.
Abstract:
A facility which operates according to galvanic principles, such as in particular a lithium-ion accumulator, and a method for monitoring and controlling an electric operating condition of the facility. The facility comprises at least one galvanic cell and an operating management system for monitoring and controlling the electric operating condition of the facility and for monitoring a representative temperature of the facility. The operating management system is designed to control the electric operating condition of the facility as a function of the temperature. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
Abstract:
The invention relates to an energy storage arrangement (5), comprising a plurality of partial energy stores (1) and a contacting device (6) for contacting several partial energy stores (1) to one another. Each partial energy store (1) has a frame structure (2) supporting an energy storage section (4) having an electrode array and at least two connecting ends. The partial energy store is provided with a pressure segment (2.2) and a contact segment (3), wherein the connecting ends of the energy storage section (4) are connected to the contact segment (3). The pressure segment (2.2) is configured and arranged to elastically push the contacting device (6) against the contact segment (3). The invention further relates to an energy storage device (1), which is in particular well suited for partial energy stores (1) in an energy storage arrangement (5) such as described above.
Abstract:
The invention relates to a method for producing an electrode, in particular a negative electrode, of an electrochemical cell having a metal substrate, wherein the method includes the steps of treating the metal substrate with UV irradiation and treating the metal substrate using an organic acid.
Abstract:
Method for producing electric cells for electrochemical energy storage devices, the method of production comprising the following steps: (S1a) feeding an anode strip, (S1b) feeding a cathode strip (20), (S1c) feeding a separator strip (30), preferably two separator strips, (S3a) stamping out an anode element from the anode strip, (S3b) stamping out a cathode element from the cathode strip (20), (S5) cutting the separator strip (30), preferably the two separator strips, into separator elements, (S6a) applying an anode element to a first separator element to form an anode-separator element, (S6b) applying a cathode element to a second separator element to form a cathode-separator element, and (S7) stacking an anode number of anode-separator elements and a cathode number of cathode-separator elements to form an anode-separator-and-cathode-separator stack.