Printing component arrays with different orientations

    公开(公告)号:US10748793B1

    公开(公告)日:2020-08-18

    申请号:US16274969

    申请日:2019-02-13

    Abstract: A method of micro-transfer printing comprises providing a component source wafer and components disposed in, on, or over the component source wafer. A destination substrate and a stamp for transferring the components from the component source wafer to the destination substrate is provided. The component source wafer has an attribute or structure that varies across the component source wafer that affects the structure, operation, appearance, or performance of the components. A first array of components is transferred from the component source wafer to the destination substrate with a first orientation. A second array of components is transferred from the component source wafer to the destination substrate with a second orientation different from the first orientation. Components can be transferred by micro-transfer printing and different orientations can be a different rotation, overlap, interlacing, or offset.

    PRINTING COMPONENT ARRAYS WITH DIFFERENT ORIENTATIONS

    公开(公告)号:US20200258761A1

    公开(公告)日:2020-08-13

    申请号:US16274969

    申请日:2019-02-13

    Abstract: A method of micro-transfer printing comprises providing a component source wafer and components disposed in, on, or over the component source wafer. A destination substrate and a stamp for transferring the components from the component source wafer to the destination substrate is provided. The component source wafer has an attribute or structure that varies across the component source wafer that affects the structure, operation, appearance, or performance of the components. A first array of components is transferred from the component source wafer to the destination substrate with a first orientation. A second array of components is transferred from the component source wafer to the destination substrate with a second orientation different from the first orientation. Components can be transferred by micro-transfer printing and different orientations can be a different rotation, overlap, interlacing, or offset.

    Micro-transfer printing with selective component removal

    公开(公告)号:US10573544B1

    公开(公告)日:2020-02-25

    申请号:US16163559

    申请日:2018-10-17

    Abstract: An example of a method of micro-transfer printing comprises providing a micro-transfer printable component source wafer, providing a stamp comprising a body and spaced-apart posts, and providing a light source for controllably irradiating each of the posts with light through the body. Each of the posts is contacted to a component to adhere the component thereto. The stamp with the adhered components is removed from the component source wafer. The selected posts are irradiated through the body with the light to detach selected components adhered to selected posts from the selected posts, leaving non-selected components adhered to non-selected posts. In some embodiments, using the stamp, the selected components are adhered to a provided destination substrate. In some embodiments, the selected components are discarded. An example micro-transfer printing system comprises a stamp comprising a body and spaced-apart posts and a light source for selectively irradiating each of the posts with light.

    INTERCONNECTION BY LATERAL TRANSFER PRINTING
    97.
    发明申请

    公开(公告)号:US20200052176A1

    公开(公告)日:2020-02-13

    申请号:US16660776

    申请日:2019-10-22

    Abstract: A transfer print structure comprises a destination substrate having a substrate surface and one or more substrate conductors disposed on or in the destination substrate. One or more interconnect structures are disposed on and protrude from the destination substrate in a direction orthogonal to the substrate surface. Each interconnect structure comprises one or more notches, each notch having an opening on an edge of the interconnect structure and extending at least partially through the interconnect structure in a direction parallel to the substrate surface from the edge and a notch conductor disposed at least partially in the notch and electrically connected to one of the substrate conductors. In some embodiments, an electronic component comprising connection posts is transfer printed into electrical contact with a corresponding notch conductor by laterally moving the electronic component over the substrate surface to electrically contact the connection post to the notch conductor.

    MICRO-LIGHT-EMITTING-DIODE DISPLAYS
    98.
    发明申请

    公开(公告)号:US20200020676A1

    公开(公告)日:2020-01-16

    申请号:US16033159

    申请日:2018-07-11

    Abstract: An exemplary active-matrix display comprises pixels disposed in a pixel array and pixel micro-controllers disposed in a controller array on a display substrate. Each of the pixels comprises micro-light-emitting elements that emit different color light. Each of the pixel micro-controllers is electrically connected to control the micro-light-emitting elements in each of two or more adjacent pixels in the pixel array. A spatial separation between pixels is greater than a spatial separation between the micro-light-emitting elements and is greater than a size of each of the micro-light-emitting elements. The micro-light-emitting elements in each of the pixels are disposed in a common pixel direction orthogonal to a pixel micro-controller center line an element distance substantially equal to or greater than one quarter of the extent of the pixel micro-controller in the common pixel direction from the center line. The pixel direction for each pixel controlled by a common pixel micro-controller is different.

    Inorganic light-emitting-diode displays with multi-ILED pixels

    公开(公告)号:US10468391B2

    公开(公告)日:2019-11-05

    申请号:US15891211

    申请日:2018-02-07

    Inventor: Ronald S. Cok

    Abstract: An inorganic light-emitting diode (iLED) display comprises a separate, independent, and distinct display substrate having a display area. A plurality of spatially separated pixels are distributed on or over the display substrate in the display area. Each pixel includes a group of two or more spatially separated iLEDs each having an iLED substrate separate, independent, and distinct from the display substrate. The two or more iLEDs are electrically connected in common to emit light together in response to a control signal. The pixels can include multiple groups of two or more iLEDs, each group of iLEDs can emit a different color of light to make a full-color display. The iLED display can be a passive-matrix display or include a pixel controller in an active-matrix configuration. The iLEDs and pixel controller can be provided on a pixel substrate disposed on the display substrate.

Patent Agency Ranking