摘要:
A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.
摘要:
In a method of forming a single crystalline semiconductor layer, an amorphous layer may be formed on a seed layer that includes a single crystalline material. The single crystalline layer may be formed from the amorphous layer by irradiating a laser beam onto the amorphous layer using the seed layer as a seed for a phase change of the amorphous layer. The laser beam may have an energy for melting the amorphous layer, and the laser beam may be irradiated onto the amorphous layer without generating a superimposedly irradiated region of the amorphous layer. The single crystalline layer may include a high density of large-sized grains without generating a protrusion thereon through a simple process so that a semiconductor device including the single crystalline layer may have a high degree of integration and improved electrical characteristics.
摘要:
Disclosed is a semiconductor fin construction useful in FinFET devices that incorporates an upper region and a lower region with wherein the upper region is formed with substantially vertical sidewalls and the lower region is formed with inclined sidewalls to produce a wider base portion. The disclosed semiconductor fin construction will also typically include a horizontal step region at the interface between the upper region and the lower region. Also disclosed are a series of methods of manufacturing semiconductor devices incorporating semiconductor fins having this dual construction and incorporating various combinations of insulating materials such as silicon dioxide and/or silicon nitride for forming shallow trench isolation (STI) structures between adjacent semiconductor fins.
摘要:
An integrated circuit device includes a gate electrode formed on an active region of an integrated circuit device and on a field isolation layer adjacent to the active region. A source region and a drain region are in the active region on alternate sides of the gate electrode. At least one buried insulation layer is beneath the drain region or the source region.
摘要:
Methods of manufacturing semiconductor devices having at least one single crystal silicon layer are provided. Pursuant to these methods, a first seed layer that includes silicon is formed. A first non-single crystalline silicon layer is then formed on the first seed layer. The first non-single crystalline silicon layer is irradiated with a laser to transform the first non-single crystalline silicon layer into a first single crystalline silicon layer. Corresponding semiconductor devices are also disclosed.
摘要:
Embodiments of the present invention include heterogeneous substrates, integrated circuits formed on such heterogeneous substrates, and methods of forming such substrates and integrated circuits. The heterogeneous substrates according to certain embodiments of the present invention include a first Group IV semiconductor layer (e.g., silicon), a second Group IV pattern (e.g., a silicon-germanium pattern) that includes a plurality of individual elements on the first Group IV semiconductor layer, and a third Group IV semiconductor layer (e.g., a silicon epitaxial layer) on the second Group IV pattern and on a plurality of exposed portions of the first Group IV semiconductor layer. The second Group IV pattern may be removed in embodiments of the present invention. In these and other embodiments of the present invention, the third Group IV semiconductor layer may be planarized.
摘要:
A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
摘要:
A method of forming a fin field effect transistor on a semiconductor substrate includes forming a vertical fin protruding from the substrate. A buffer oxide liner is formed on a top surface and on sidewalls of the fin. A trench is then formed on the substrate, where at least a portion of the fin protrudes from a bottom surface of the trench. The trench may be formed by forming a dummy gate on at least a portion of the fin, forming an insulation layer on the fin surrounding the dummy gate, and then removing the dummy gate to expose the at least a portion of the fin, such that the trench is surrounded by the insulation layer. The buffer oxide liner is then removed from the protruding portion of the fin, and a gate is formed in the trench on the protruding portion of the fin.
摘要:
A semiconductor device includes a stacked structure disposed on a semiconductor substrate. The stacked structure includes interlayer insulating layers and gate electrodes, alternately stacked. Separation patterns are disposed to penetrate the stacked structure. A channel structure is disposed between the separation patterns. The channel structure includes a horizontal portion interposed between the stacked structure and the semiconductor substrate while being in contact with the semiconductor substrate and includes vertical portions extending from the horizontal portion in a vertical direction and penetrating the stacked structure. A lower structure is interposed between the horizontal portion and the separation patterns. A dielectric structure is interposed between the vertical portions and the stacked structure and extends between the horizontal portion and the stacked structure.
摘要:
A non-volatile memory structure can include a substrate extending horizontally and a filling insulating pattern extending vertically from the substrate. A plurality of active channel patterns can extend vertically from the substrate in a zig-zag pattern around a perimeter of the filling insulating pattern, where each of the active channel patterns having a respective non-circular shaped horizontal cross-section. A vertical stack of a plurality of gate lines can each extend horizontally around the filling insulating pattern and the plurality of active channel patterns.