摘要:
The invention relates to a method for production of deep p regions in silicon, with the method having the following step: bombardment of an n substrate section, an n epitaxial section or an exposed weakly doped n region of a semiconductor component that is to be produced with high-energy particles, whose energy is chosen such that the previous n region is redoped to form a p region to the desired depth after a specific healing time at a specific healing temperature after the bombardment, and to its use for the production of semiconductor components, for example in order to carry out isolating diffusion.
摘要:
A preferably asymetrical thyristor (1) with at least one driver stage (20) for amplifying a control current (I) fed into the cathodal base (16) of the thyristor, in which, in the driver stage, the transistor gain factors &agr;npn and &agr;pnp are in each case greater than, preferably, in the thyristor and anode short circuits of the thyristor (174) have a smaller electrical conductivity in the driver stage than in the thyristor.
摘要:
A semiconductor component includes a semiconductor body and a second semiconductor zone of a first conductivity type that serves as a rear side emitter. The second semiconductor zone is preceded by a plurality of third semiconductor zones of a second conductivity type that is opposite to the first conductivity type. The third semiconductor zones are spaced apart from one another in a lateral direction. In addition, provided within the semiconductor body is a field stop zone spaced apart from the second semiconductor zone, thereby reducing an electric field in the direction toward the second semiconductor zone.
摘要:
A semiconductor device includes a first layer having a first conductivity type, a second layer having a second conductivity type, a third layer having the second conductivity type, one or more first zones having the first conductivity type and located within the second layer, wherein each one of the one or more first zones is adjacent to the third layer, and one or more second zones having the second conductivity type and located within the second layer, wherein each one of the one or more second zones is adjacent to one or more of the one or more first zones.
摘要:
A semiconductor device includes a first layer having a first conductivity type, a second layer having a second conductivity type, a third layer having the second conductivity type, one or more first zones having the first conductivity type and located within the second layer, wherein each one of the one or more first zones is adjacent to the third layer, and one or more second zones having the second conductivity type and located within the second layer, wherein each one of the one or more second zones is adjacent to one or more of the one or more first zones.
摘要:
A semiconductor component includes a semiconductor body and a second semiconductor zone of a first conductivity type that serves as a rear side emitter. The second semiconductor zone is preceded by a plurality of third semiconductor zones of a second conductivity type that is opposite to the first conductivity type. The third semiconductor zones are spaced apart from one another in a lateral direction. In addition, provided within the semiconductor body is a field stop zone spaced apart from the second semiconductor zone, thereby reducing an electric field in the direction toward the second semiconductor zone.
摘要:
An IGBT includes a first region, a second region located within the first region, a first contact coupled to the first region, a first layer arranged below the first region, a gate overlying at least a portion of the first region between the second region and the first layer and a second layer formed under the first layer. One or more stacked zones are formed within the second layer. Each one or more stacked zones includes a first zone and a second zone that overlies the first zone. Each first zone is inversely doped with respect to the second layer and each second zone is inversely doped with respect to the first zone. The IGBT further includes a third layer formed under the second layer and a second contact coupled to the third layer.
摘要:
An IGBT includes a first region, a second region located within the first region, a first contact coupled to the first region, a first layer arranged below the first region, a gate overlying at least a portion of the first region between the second region and the first layer and a second layer formed under the first layer. One or more stacked zones are formed within the second layer. Each one or more stacked zones includes a first zone and a second zone that overlies the first zone. Each first zone is inversely doped with respect to the second layer and each second zone is inversely doped with respect to the first zone. The IGBT further includes a third layer formed under the second layer and a second contact coupled to the third layer.
摘要:
In one embodiment, a method of forming a semiconductor device includes forming a first porous semiconductor layer over a top surface of a substrate. A first epitaxial layer is formed over the first porous semiconductor layer. A circuitry is formed within and over the first epitaxial layer. The circuitry is formed without completely oxidizing the first epitaxial layer.
摘要:
A drift layer of a super junction semiconductor device includes first portions of a first conductivity type and second portions of a second conductivity type opposite to the first conductivity type. The first and second portions are formed both in a cell area and in an edge area surrounding the cell area, wherein an on-state or forward current through the drift layer flows through the first portions in the cell area. At least one of the first and second portions other than the first portions in the cell area includes an auxiliary structure or contains auxiliary impurities to locally reduce the avalanche rate. Locally reducing the avalanche rate increases the total voltage blocking capability of the super junction semiconductor device.