摘要:
A contact rhodium structure is fabricated by a process that comprises obtaining a substrate having a dielectric layer thereon, wherein the dielectric layer has cavities therein into which the contact rhodium is to be deposited; depositing a seed layer in the cavities and on the dielectric layer; and depositing the rhodium by electroplating from a bath comprising a rhodium salt; an acid and a stress reducer; and then optionally annealing the structure.
摘要:
The present invention is related to a method for forming vertical conductive structures by electroplating. Specifically, a template structure is first formed, which includes a substrate, a discrete metal contact pad located on the substrate surface, an inter-level dielectric (ILD) layer over both the discrete metal contact pad and the substrate, and a metal via structure extending through the ILD layer onto the discrete metal contact pad. Next, a vertical via is formed in the template structure, which extends through the ILD layer onto the discrete metal contact pad. A vertical conductive structure is then formed in the vertical via by electroplating, which is conducted by applying an electroplating current to the discrete metal contact pad through the metal via structure. Preferably, the template structure comprises multiple discrete metal contact pads, multiple metal via structures, and multiple vertical vias for formation of multiple vertical conductive structures.
摘要:
Techniques for electrodepositing selenium (Se)-containing films are provided. In one aspect, a method of preparing a Se electroplating solution is provided. The method includes the following steps. The solution is formed from a mixture of selenium oxide; an acid selected from the group consisting of alkane sulfonic acid, alkene sulfonic acid, aryl sulfonic acid, heterocyclic sulfonic acid, aromatic sulfonic acid and perchloric acid; and a solvent. A pH of the solution is then adjusted to from about 2.0 to about 3.0. The pH of the solution can be adjusted to from about 2.0 to about 3.0 by adding a base (e.g., sodium hydroxide) to the solution. A Se electroplating solution, an electroplating method and a method for fabricating a photovoltaic device are also provided.
摘要:
A nanostructure comprising germanium, including wires of less than 1 micron in diameter and walls of less than 1 micron in width, in contact with the substrate and extending outward from the substrate is provided along with a method of preparation.
摘要:
Methods for forming photovoltaic devices, methods for forming semiconductor compounds, photovoltaic device and chemical solutions are presented. For example, a method for forming a photovoltaic device comprising a semiconductor layer includes forming the semiconductor layer by electrodeposition from an electrolyte solution. The electrolyte solution includes copper, indium, gallium, selenous acid (H2SeO3) and water.
摘要翻译:提出了形成光伏器件的方法,形成半导体化合物的方法,光伏器件和化学溶液。 例如,形成包含半导体层的光电器件的方法包括通过电解液的电沉积来形成半导体层。 电解质溶液包括铜,铟,镓,硒酸(H 2 SeO 3)和水。
摘要:
A method of reducing the loss of elements of a photovoltaic thin film structure during an annealing process, includes depositing a thin film on a substrate, wherein the thin film includes a single chemical element or a chemical compound, coating the thin film with a protective layer to form a coated thin film structure, wherein the protective layer prevents part of the single chemical element or part of the chemical compound from escaping during an annealing process, and annealing the coated thin film structure to form a coated photovoltaic thin film structure, wherein the coated photovoltaic thin film retains the part of the single chemical element or the part of the chemical compound that is prevented from escaping during the annealing by the protective layer.
摘要:
Methods for electrodepositing germanium on various semiconductor substrates such as Si, Ge, SiGe, and GaAs are provided. The electrodeposited germanium can be formed as a blanket or patterned film, and may be crystallized by solid phase epitaxy to the orientation of the underlying semiconductor substrate by subsequent annealing. These plated germanium layers may be used as the channel regions of high-mobility channel field effect transistors (FETs) in complementary metal oxide semiconductor (CMOS) circuits.
摘要:
Stabilized metal gate electrode for complementary metal-oxide-semiconductor (“CMOS”) applications and methods of making the stabilized metal gate electrodes are disclosed. Specifically, the metal gate electrodes are stabilized by alloying wherein the alloy comprises a metal selected from the group consisting of Re, Ru, Pt, Rh, Ni, Al and combinations thereof and an element selected from the group consisting of W, V, Ti, Ta and combinations thereof.
摘要:
A memory storage device that contains alternating first and second ferromagnetic material layers is provided. Each first ferromagnetic material layer has a first layer thickness (L1) and a first critical current density (JC1), and each second ferromagnetic material layer has a second layer thickness (L2) and a second critical current density (JC2), provided that JC1
摘要:
An electroplating apparatus and method for depositing a metallic layer on the surface of a wafer is provided wherein said apparatus and method do not require physical attachment of an electrode to the wafer. The surface of the wafer to be plated is positioned to face the anode and a plating fluid is provided between the wafer and the electrodes to create localized metallic plating. The wafer may be positioned to physically separate and lie between the anode and cathode so that one side of the wafer facing the anode contains a catholyte solution and the other side of the wafer facing the cathode contains an anolyte solution. Alternatively, the anode and cathode may exist on the same side of the wafer in the same plating fluid. In one example, the anode and cathode are separated by a semi permeable membrane.