Abstract:
A power amplification module includes a first input terminal arranged to receive a first transmission signal in a first frequency band, a second input terminal arranged to receive a second transmission signal in a second frequency band higher than the first frequency band, a first amplification circuit that amplifies the first transmission signal, a second amplification circuit that amplifies the second transmission signal, a first filter circuit located between the first input terminal and the first amplification circuit, and a second filter circuit located between the second input terminal and the second amplification circuit. The first filter circuit is a low-pass filter that allows the first frequency band to pass therethrough and that attenuates a harmonic of the first transmission signal and the second transmission signal. The second filter circuit is a high-pass filter that allows the second frequency band to pass therethrough and that attenuates the first transmission signal.
Abstract:
A power amplification module includes: a first transistor that amplifies a first radio frequency signal and outputs a second radio frequency signal; a second transistor that amplifies the second radio frequency signal and outputs a third radio frequency signal; and first and second bias circuits that supply first and second bias currents to bases of the first and second transistors. The first bias circuit includes a third transistor that outputs the first bias current from its emitter or source, a capacitor that is input with the first radio frequency signal and connected to the base of the first transistor, a first resistor connected between the emitter or source of the third transistor and the base of the first transistor, a second resistor connected between the capacitor and the emitter or source of the third transistor, and a third resistor connected between the capacitor and the base of the first transistor.
Abstract:
A high-frequency signal processing apparatus and a wireless communication apparatus can achieve a decrease in power consumption. For example, when an indicated power level to a high-frequency power amplifier is equal to or greater than a second reference value, envelope tracking is performed by causing a source voltage control circuit to control a high-speed DCDC converter using a detection result of an envelope detecting circuit and causing a bias control circuit to indicate a fixed bias value. The source voltage control circuit and the bias control circuit indicate a source voltage and a bias value decreasing in proportion to a decrease in the indicated power level when the indicated power level is in a range of the second reference value to the first reference value, and indicate a fixed source voltage and a fixed bias value when the indicated power level is less than the first reference value.
Abstract:
The present disclosure is to improve the power added efficiency of a power amplifier at high output power. The power amplifier includes: a first capacitor with a radio frequency signal input to one end thereof; a first transistor whose base is connected to the other end of the first capacitor to amplify the radio frequency signal; a bias circuit for supplying bias to the base of the first transistor; and a second capacitor with one end connected to the base of the first transistor and the other end connected to the emitter of the first transistor.
Abstract:
Provided is a communication unit that includes first and second power-amplification modules, which can be integrated. The first power-amplification module includes a first power-amplifier for a first frequency band in a first communication scheme, a second power-amplifier for a second frequency band in the first communication scheme, a third power-amplifier for a third frequency band in a second communication scheme, a fourth power-amplifier for a fourth frequency band in the second communication scheme, a first bias circuit that generates a first bias current to the first and second power-amplifiers, and a bias current circuit that converts the first bias current into a second bias current to the third and fourth power-amplifiers. The second power-amplification module includes a fifth power-amplifier for a fifth frequency band in the first communication scheme, and a second bias circuit that generates a third bias current to the fifth power-amplifier.
Abstract:
A high-frequency signal processing apparatus and a wireless communication apparatus can achieve a decrease in power consumption. For example, when an indicated power level to a high-frequency power amplifier is equal to or greater than a second reference value, envelope tracking is performed by causing a source voltage control circuit to control a high-speed DCDC converter using a detection result of an envelope detecting circuit and causing a bias control circuit to indicate a fixed bias value. The source voltage control circuit and the bias control circuit indicate a source voltage and a bias value decreasing in proportion to a decrease in the indicated power level when the indicated power level is in a range of the second reference value to the first reference value, and indicate a fixed source voltage and a fixed bias value when the indicated power level is less than the first reference value.
Abstract:
Improvement in linearity is achieved at low costs in a power amplifier module employing an envelope tracking system. The power amplifier module includes a first power amplifier circuit that amplifies a radio frequency signal and that outputs a first amplified signal, a second power amplifier circuit that amplifies the first amplified signal on the basis of a source voltage varying depending on amplitude of the radio frequency signal and that outputs a second amplified signal, and a matching circuit that includes first and second capacitors connected in series between the first and second power amplifier circuit and an inductor connected between a node between the first and second capacitors and a ground and that decreases a gain of the first power amplifier circuit as the source voltage of the second power amplifier circuit increases.
Abstract:
The present disclosure is to improve the power added efficiency of a power amplifier at high output power. The power amplifier includes: a first capacitor with a radio frequency signal input to one end thereof; a first transistor whose base is connected to the other end of the first capacitor to amplify the radio frequency signal; a bias circuit for supplying bias to the base of the first transistor; and a second capacitor with one end connected to the base of the first transistor and the other end connected to the emitter of the first transistor.
Abstract:
A power amplification module includes a first transistor which amplifies and outputs a radio frequency signal input to its base; a current source which outputs a control current; a second transistor connected to an output of the current source, a first current from the control current input to its collector, a control voltage generation circuit connected to the output and which generates a control voltage according to a second current from the control current; a first FET, the drain being supplied with a supply voltage, the source being connected to the base of the first transistor, and the gate being supplied with the control voltage; and a second FET, the drain being supplied with the supply voltage, the source being connected to the base of the second transistor, and the gate being supplied with the control voltage.
Abstract:
Linearity and power efficiency in a power amplifier circuit are enhanced. The power amplifier circuit includes a first transistor that amplifies a signal input to the base and that outputs the amplified signal from the collector and a first capacitor that is disposed between the base and the collector of the first transistor and that has voltage dependency of a capacitance value lower than that of a base-collector parasitic capacitance value of the first transistor.