Abstract:
Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
Abstract:
Disclosed herein are systems, methods, and apparatus for forming low emissivity panels. In some embodiments, a partially fabricated panel may be provided that includes a substrate, a reflective layer formed over the substrate, and a barrier layer formed over the reflective layer such that the reflective layer is formed between the substrate and the barrier layer. The barrier layer may include a partially oxidized alloy of three or more metals. A first interface layer may be formed over the barrier layer. A top dielectric layer may be formed over the first interface layer. The top dielectric layer may be formed using reactive sputtering in an oxygen containing environment. The first interface layer may prevent further oxidation of the partially oxidized alloy of the three or more metals when forming the top dielectric layer. A second interface layer may be formed over the top dielectric layer.
Abstract:
This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
Abstract:
Candidate wet processes for native oxide removal from, and passivation of, germanium surfaces can be screened by high-productivity combinatorial variation of different process parameters on different site-isolated regions of a single substrate. Variable process parameters include the choice of hydrohalic acid used to remove the native oxide, the concentration of the acid in the solution, the exposure time, and the use of an optional sulfur passivation step. Measurements to compare the results of the process variations include attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle, atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray fluorescence (XRF). A sample screening experiment indicated somewhat less native oxide regrowth using HCl or HBr without sulfur passivation, compared to using HF with sulfur passivation.
Abstract:
A nonvolatile memory device contains a resistive switching memory element with improved device switching performance and life and methods for forming the same. The nonvolatile memory device has a first layer on a substrate, a resistive switching layer on the first layer, and a second layer. The resistive switching layer is disposed between the first layer and the second layer and the resistive switching layer comprises a material having the same morphology as the top surface of the first layer. A method of forming a nonvolatile memory element in a ReRAM device includes forming a resistive switching layer on a first layer and forming a second layer, so that the resistive switching layer is disposed between the first layer and the second layer. The resistive switching layer comprises a material formed with the same morphology as the top surface of the first layer.
Abstract:
A method for fabricating high efficiency CIGS solar cells including the deposition of Ga concentrations (Ga/(Ga+In)=0.25−0.66) from sputtering targets containing Ga concentrations between about 25 atomic % and about 66 atomic %. Further, the method includes a high temperature selenization process integrated with a high temperature anneal process that results in high efficiency.
Abstract:
FinFETs and methods for making FinFETs are disclosed. A fin is formed on a substrate, wherein the fin has a height greater than 2 to 6 times of its width, a length defining a channel between source and drain ends, and the fin comprises a lightly doped semiconductor. A conformally doped region of counter-doped semiconductor is formed on the fin using methods such as monolayer doping, sacrificial oxide doping, or low energy plasma doping. Halo-doped regions are formed by angled ion implantation. The halo-doped regions are disposed in the lower portion of the source and drain and adjacent to the fin. Energy band barrier regions can be formed at the edges of the halo-doped regions by angled ion implantation.
Abstract:
Provided are carbon doped resistive switching layers, resistive random access memory (ReRAM) cells including these layers, as well as methods of forming thereof. Carbon doping of metal containing materials creates defects in these materials that allow forming and breaking conductive paths as evidenced by resistive switching. Relative to many conventional dopants, carbon has a lower diffusivity in many suitable base materials. As such, these carbon doped materials exhibit structural stability and consistent resistive switching over many operating cycles. Resistive switching layers may include as much as 30 atomic percent of carbon, making the dopant control relatively simple and flexible. Furthermore, carbon doping has acceptor characteristics resulting in a high resistivity and low switching currents, which are very desirable for ReRAM applications. Carbon doped metal containing layer may be formed from metalorganic precursors at temperatures below saturation ranges of atomic layer deposition.
Abstract:
A multiple channel site-isolated reactor system and method are described. The system contains a reactor block with a plurality of reactors. Input lines are coupled to each reactor to provide a fluid to the respective reactors. A sealing element associated with each reactor contacts a surface of a substrate disposed below the reactor block, which defines isolated regions on the surface of the substrate. A dissolution rate monitor extends into each reactor to monitor a rate of real-time dissolution of one or more layers on the surface of the substrate when it is disposed proximate to the surface of the substrate.
Abstract:
Systems and methods to determine ozone concentration in a gas mixture of ozone and oxygen, based on measurements of the total gas mixture properties, can enable the measurements of ozone concentration at low pressure settings. The ozone concentration determination can be applied to vacuum processing chamber, using either novel ozone sensor or existing mass flow meter or controller.