Abstract:
Airbags each belonging to one of first and second control blocks are arranged below the thighs of an occupant seated on a seat seating surface (S). Specifically, the first and second control blocks are arranged such that the airbags belonging thereto are adjacent to one another in the seat width direction. Further, a seat device controls the airbags belonging to the first control block and the airbags belonging to the second control block to alternately expand and contract.
Abstract:
A compression depth calculation system is configured to calculate the compression depth which is a magnitude of depression of the compressed object generated by the compression and includes a measuring apparatus to be mounted on the object, and a compression depth calculating apparatus is configured to calculate the compression depth on the basis of information from the measuring apparatus. The compression depth calculation apparatus calculates a coefficient of transformation on the basis of a second-order differential waveform created for the information acquired from a magnetic sensor and acceleration information acquired from an acceleration sensor, creates a displacement waveform of a compressed portion by multiplying the acquired information by the coefficient of transformation, and calculates the compression depth on the basis of the displacement waveform.
Abstract:
A feedback electro hemostatic compression pad developed to decrease hospitalization duration after angiography and to provide a more comfortable angiography, and which comprises a foldable (2) paddle (1) when necessary and a compressing conservation balloon (4), a micro air pump (5) which provides inflating of the conservation balloon (4) after the instruction sent according to the blood pressure values sensed with sensors and stabilizing thereof on the determined blood pressure, a control panel (6) controlling said micro air pump (5) and an air vent (3) which decreases the air in conservation balloon (4) according to the changing blood pressure values and vents the air at the end of the operation.
Abstract:
An exoskeleton for a limb of a user utilizes an air bladder strap, which may be monitored and the pressure therein adjusted from time to time.
Abstract:
A multimodal haptic device operating as a closed-loop system, the device including a pipeline configured to allow a closed-loop flow of a fluid medium, a manifold operatively connected to the pipeline, the manifold having a pump and a valve to control and regulate a flow of the fluid medium along the pipeline, and a display unit operatively connected to the pipeline, the display unit having a tactile display and a valve operatively connected to the tactile display for regulating an efflux of the fluid medium from the tactile display into the pipeline.
Abstract:
A sensory upright chair system to provide deep touch pressure to a person and method of use. The system includes a frame, a pump, a pair of inflatable air tubes, a pressure release valve, hoses and hardware, a pressure sensor, and a fabric cover. The pump and pressure sensor are connected to a power supply, and connected to the air tubes and pressure release valve via hoses and hardware. Switching on the power supply provides controlled inflation to the air tubes. A user sits in the chair between deflated air tubes. As the pressure in the air tubes increase, deep touch pressure is applied to the occupant's body where the air tubes contact the occupant. The fabric cover provides a comfortable barrier between the occupant and the air tubes. Deep touch pressure is thus applied to the occupant via contact with the tubes through the fabric cover.
Abstract:
A sensory lounging chair system and method of use. The system generally includes a frame, a pump, air tubes connecting the pump to a pair of inflatable air tubes, pressure release valves, piping and hardware, a pressure sensor, and a fabric cover. In a preferred embodiment, the pump and pressure sensor are powered by a power supply connected to a terminal board, which in turn is connected to the pump and the pressure sensor. The fabric cover provides a comfortable barrier between the occupant and the air tubes, which initially are usually deflated or less than fully inflated. As the pressure in the air tubes increase, deep touch pressure is applied to the occupant's body in the places where the air tubes are in contact with the occupant. Deep touch pressure is thus applied to the occupant via contact with the tubes through the fabric cover.
Abstract:
A CPR machine (100) is configured to perform compressions on a patient's (182) chest that alternate with releases. The CPR machine includes a compression mechanism (148), and a driver system (141) configured to drive the compression mechanism. A compression force may be sensed, and the driving is adjusted accordingly if there is a surprise. For instance, driving may have been automatic according to a motion-time profile, which is adjusted if the compression force is not as expected (850). An optional chest-lifting device (152) may lift the chest between the compressions, to assist actively the decompression of the chest. A lifting force may be sensed, and the motion-time profile can be adjusted if the compression force or the lifting force is not as expected. An advantage is that a changing condition in the patient or in the retention of the patient within the CPR machine may be detected and responded to.
Abstract:
The invention provides a non-invasive device (100) for skin rejuvenation using a treatment pressure below ambient pressure, and provides a method and a computer program product. The non-invasive device comprises a suction chamber (110) having a skin contact surface (115) comprising an opening (120) for exposing the skin tissue (200) to the suction chamber for applying a suction force to an outer surface (210) of the skin tissue. The opening in the suction chamber is less than 10 square millimeters. The suction chamber is dimensioned so as to allow it to be manually applied to the outer surface of the skin tissue. The non-invasive device further comprises a controller (140) for controlling a level of treatment pressure (Pt) inside the suction chamber (110) and for controlling an application time interval (Δt) of the treatment pressure for damaging an interface (225) between an epidermis layer (220) and a dermis layer (230) of the skin tissue.
Abstract:
A system for administering a therapeutic treatment to a portion of a patient body. In one embodiment the system includes a pressure sensor, a treatment head, and at least one computer processor in operable electrical communication with both the pressure sensor and treatment head. When a treatment tip of the treatment head is applied against the portion of the patient body, the at least one computer processor receives time dependent pressure readings from the pressure sensor corresponding to pressure applied by the treatment tip against the portion of the patient body. The at least one computer processor calculates a test frequency via an algorithm stored in the system. The system compares the test frequency to treatment plan frequencies and selects treatment plan based on the comparison.