Abstract:
A hybrid vehicle includes an engine that is an internal combustion engine, a motor generator that is a rotating electric machine used together with the engine for driving the vehicle, an output shaft transmitting power to a wheel, a transmission member coupled to the output shaft, a power split device splitting the output from the engine to the motor generator and transmission member, a detection device detecting irregularities on a road, and a control unit reducing, when the detected result by the detection device indicates generation of periodic torque variation at the output shaft, the output from the engine based on the detected result. Accordingly, a hybrid vehicle that does not require a torque limiter is provided.
Abstract:
A hybrid vehicle includes an internal combustion engine; a rotating electrical machine that rotates an output shaft of the internal combustion engine; and a control unit that performs automatic stop control for the internal combustion engine. The control unit causes the output shaft to rotate using the rotating electrical machine, when a stop period of the internal combustion engine according to the automatic stop control is equal to or longer than a first period.
Abstract:
A motor bicycle control system is provided for controlling a motor for assisting rotation of a bicycle wheel. The bicycle motor control system includes a motor communication part and a first mode switching part. The motor communication part performs power line communication with an electrical bicycle component and that changes a motor operation mode of the motor. The first mode switching part is operated either by electrical power supplied via a power line through which the motor communication part performs power line communication, or by electrical power obtained from a generator. The first mode switching part switches the motor operation mode from a motor driving mode in which the motor assist in rotating the bicycle wheel to a motor power generating mode in which the motor outputs electrical power that has been generated using rotation of the bicycle wheel according to a state of communication with the electrical component.
Abstract:
A method for controlling braking in a hybrid vehicle includes the steps of determining a value of a variable pertaining to operation of the hybrid vehicle and applying regenerative braking based at least in part on the value of the variable. The variable comprises a speed of the hybrid vehicle, a steering angle of the hybrid vehicle, or a rate of change of the steering angle.
Abstract:
A vehicle equipped for power take off operation using direct application of power from a hybrid electric powertrain. A body computer connects to the controller area network to receive chassis input signals. A controller area network has an electronic control module, a transmission control module, and a hybrid control module. The electronic control module electrically connects to the transmission control module and the hybrid control module. A data link based remote power module is installed on the vehicle for generating body demand signals for initiating operation of the vehicle hybrid electric powertrain for a power take off operation. A plurality of PTO request switches are electrically connected to the controller area network. The body computer is programmable to accept a signal from at least one of the PTO request switches to change an operating state of the power take off operation.
Abstract:
A control apparatus for a hybrid vehicle, which outputs motive power to a drive shaft from an internal combustion engine and motor generators as motive power sources, including: a recirculating gas control portion that performs valve opening control on a recirculation valve so that an amount of recirculating exhaust reaches a control target valve, and that closes the recirculation valve completely when a deceleration request by a driver is detected; a throttle control portion that performs valve closing control on a throttle valve so that the amount of air circulating through an intake pipe decreases at a predetermined speed when the deceleration request issued by the driver is detected; and a braking control portion that controls regenerative braking forces of the motor generators so that at least one of the motor generators absorbs the motive power generated by the engine while valve closing control is executed on the throttle valve.
Abstract:
To provide a sensor equipped and in-wheel motor incorporated bearing device for a vehicle wheel, which is capable of accurately detecting a rotating condition of a vehicle drive wheel and is effective to accurately control an electric drive motor or an automotive vehicle, the sensor equipped and in-wheel motor incorporated bearing device includes a wheel support bearing assembly for rotatably supporting a hub of the vehicle drive wheel, an electric drive motor providing a rotation device source for the vehicle drive wheel, and a speed reducing mechanism interposed between the electric drive motor and the wheel support bearing assembly. A rotation detecting device is also provided for detecting the rotation of an output shaft of the speed reducing mechanism.
Abstract:
A work vehicle includes a pair of electric motors independently running and driving right and left running wheels in a state of being able to create straight running state and turning running; a pair of right and left change speed operation tools independently manually operated and performing a change speed operation to the right and left running wheels; and a controller controlling operation. The controller controls the operation of the respective electric motors by setting target speeds with regard to the respective electric motors such that the speed difference in the target speeds is smaller than the speed difference corresponding to the difference in the operation positions of the respective change speed operation tools by a set amount in a case where the operation positions of the respective change speed operation tools are different between right and left.
Abstract:
A control apparatus for a vehicular power transmitting system including (a) an electrically controlled differential portion which has a differential mechanism and a first electric motor connected to a rotary element of the differential mechanism and which is operable to control a differential state between rotating speeds of its input and output shafts by controlling an operating state of the first electric motor, and (b) a step-variable transmission portion which constitutes a part of a power transmitting path between the electrically controlled differential portion and a drive wheel of a vehicle, the control apparatus including a coasting-shift-down control portion configured to implement a coasting shift-down action of the step-variable transmission portion during a coasting run of the vehicle, only when a parameter correlating with a shaft torque of the step-variable transmission portion during the coasting run is held within a predetermined range.
Abstract:
A control system for a lawnmower vehicle having a plurality of electric motors may include at least one controller for controlling operation of the drive wheel electric motor in response to an operation amount of at least one operator. The controller may control operation of a driver for driving a mower-related electric motor to cause the mower-related electric motor to activate or stop.