Abstract:
Problem. Provided are a method for synthesizing spherical porous titanium oxide nanoparticles, which is easy to operate, does not take a long time for synthesis, and can easily adjust the particle diameter and the pore diameter of the spherical porous titanium oxide nanoparticles in accordance with the application thereof; spherical porous titanium oxide nanoparticles produced by the synthesizing method; and a gene gun carrier consisting of the spherical porous titanium oxide nanoparticles. Solution. A method for synthesizing spherical porous titanium oxide nanoparticles, includes: a step of reacting titanium isopropoxide and carboxylic acid in supercritical fluid, wherein the supercritical fluid is supercritical methanol, and the carboxylic acid is formic acid, acetic acid, benzoic acid, o-phthalic acid, fumaric acid, or maleic acid.
Abstract:
Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.
Abstract:
To obtain a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability, nickel manganese composite hydroxide particles are a precursor for a cathode active material having lithium nickel manganese composite oxide with a hollow structure and a small and uniform particle size.An aqueous solution for nucleation includes a metallic compounds that contains nickel and a metallic compound that contains manganese, but does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt. After nucleation is performed, an aqueous solution for particle growth is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.
Abstract:
Systems and methods are provided for the fabrication and manufacture of efficient, low-cost p-n heterojunction pyrite solar cells. The p-n heterojunction pyrite solar cells can include a pyrite thin cell component, a window layer component, and a top surface contact component. The pyrite thin cell component can be fabricated from nanocrystal paint deposited onto metal foils or microcrystalline pyrite deposited onto foil by chemical vapor deposition. A method of synthesizing colloidal pyrite nanocrystals is provided. Methods of manufacturing the efficient, low-cost p-n heterojunction pyrite solar cells are also provided.
Abstract:
The present invention relates to a complex and a method for manufacturing same, the complex comprising: at least one crystalline hybrid nanoporous material powder, in which a metal ion, or a metal ion cluster to which oxygen is bound, and an organic ligand, or the organic ligand and a negative ion ligand are in a coordinate covalent bond; and at least one organic polymer additive, or at least one organic polymer additive and an inorganic additive, wherein the shape of the complex is spherical or pseudo-spherical, the size of the complex is 0.1 to 100 mm, a total volume of pores is 5 or more volume % based on the sum of a total volume of nanoporous material having a size of at most 10 nm and a total volume of pores having a size of at least 0.1 μm, and wherein a non-surface value per weight (m2/g) of the complex as at least 83% of a non-surface value per weight (m2/g) of the nanoporous material powder.
Abstract:
Provided are porous metal oxide particles, in which 50% mean particle size by volume is equal to or larger than 50 nm and equal to or smaller than 300 nm, ratio of 90% mean particle size by volume to 50% mean particle size by volume (D90/D50) is equal to or lower than 2.0, the particles have mesopores having a pore size determined by BJH method of equal to or larger than 5 nm and equal to or smaller than 30 nm, and the structure of the pores is a three-dimensional cubic phase structure.
Abstract:
The present invention relates to a rubber granulate conversion process comprising steps consisting in: a) pyrolysing the rubber granulates at a temperature between 400 and 500° C. in the presence of water, to obtain a carbonized substance and a gaseous phase; and b) recovering the carbonized substance obtained during the previous step. The invention also relates to the products resulting from the conversion process and to the use of said products.
Abstract:
Disclosed herein are indium-tin-oxide nanoparticles and a method for continuously producing precipitated indium-tin nanoparticles having a particle size range of substantially from about 10 nm to about 200 nm and a substantially consistent ratio of indium to tin in the resultant nanoparticles across the duration of the continuous process, based on the ratio of indium to tin in a seeding solution. The method comprises preparing intermediate indium and tin compounds of the general formula [M(OH)xCy], where M represents the indium or tin ionic component of indium or tin salts, C represents the cationic component of indium or tin salt(s), x is a number greater than 0 and y=[M*valance−x]/C* valance in the seeding solution. The intermediate compounds are continuously precipitated with a base solution in a reaction vessel initially having a solvent contained therein. The method also provides a means for controlling the shape of the resultant nanoparticles. The resultant indium-tin nanoparticles may be further processed into dispersions.
Abstract:
Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material including lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.5, and after nucleation is performed, an aqueous solution for particle growth, which includes the nuclei that were formed in the nucleation step and does not substantially include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.
Abstract:
Provided is a filler powder that has a lower coefficient of thermal expansion than silica powder and is less likely to cause quality and color alteration of a resin when blended into the resin. The filler powder is made of a crystallized glass in which β-quartz solid solution and/or β-eucryptite is precipitated. The filler powder preferably has an average particle size D50 of 5 μm or less. The filler powder preferably has a coefficient of thermal expansion of 5×10−7/° C. or less in a range of 30 to 150° C.