Abstract:
The duplex tube (1) comprises a tubular core (2) and a cladding or covering layer (3) made from an alloy, the base metal of which is identical to the base metal of the alloy constituting the tubular core (2). Ultrasonic waves at normal incidence are emitted into the thickness of the covering (3) and of the core (2) of the tube (1), the ultrasonic waves reflected by the inner and outer surfaces of the tube, by its interface (4) and by any flaws in cohesion at the interface (4) are collected, the propagation times of the ultrasonic waves in the thickness of the tube (1) are measured, the amplitude and the shape of the reflected waves is determined, the tube (1), from its outer surface, is subjected to a magnetic induction created by a multi-frequency sinusoidal current, measurements of the phase and/or amplitude of the currents induced in the tube (1) are made, the thickness of the covering layer (3) is deduced therefrom, the total thickness of the tube (1) is calculated from the measurements of the propagation times of the ultrasonic waves and of the thickness of the covering layer (3), and the cohesion of the tube at its interface (4) is determined by analyzing the amplitude and the shape of the ultrasonic waves reflected by the interface (4) or transmitted by the covering layer (3).
Abstract:
A system and method is disclosed for measuring thickness of at least one film on a substrate by propagating an acoustic wave through the film on a substrate such that echo waves are generated and received by a transducer. An output signal is generated and processed to give a thickness value. The thickness valve is obtained from the time lapse between the propagated wave and receipt of the echo wave; by the frequency domain of the echo wave; or the phase of the echo wave.
Abstract:
Ultrasonic thickness measurement of layers of paint on a substrate produces pulse echoes indicative of each layer interface. Several ultrasonic waveforms are averaged in a digital oscilloscope and the resultant waveform is analyzed by a computer programmed to recognize wave forms resembling pulse echoes, compare such waveforms to stored reference waveform characteristics, and selecting the waveform having the best fit to the reference. Each selected pulse echo is graded based on amplitude, peak separation, peak symmetry, and spacing from a previous echo to determine the quality of the waveform. Layer thickness is calculated from the spacing between pulse echoes and the velocity of sound in the layer material.
Abstract:
According to the method of the invention concerning tubes, of which the plating to be checked is at least 0.4 mm thick and in which the acoustic impedance differs by at least 1% relative from that of the core of the tube, a properly dampened transducer is selected which has a frequency of 4 to 10 MHz. The position of the transducer in respect to the tube is adjusted experimentally, and its parameters of distance and orientation are differently adjusted in order to increase the "signal-to-noise" ratio. For determining the thickness of the plating, at least one double echo from the interface between the plating and the tube core is used, or alternatively, a triple echo from this interface. Also, there is a corresponding ultrasonic measuring apparatus as well as an application of the method to the ultrasonic measuring of the thickness of the plating of Zr alloy tubes. The tubes are plated with non-alloyed Zr or with some other Zr alloy.
Abstract:
An oscillator crystal measuring head is disclosed, for vacuum coating apparatus, intended for measuring the mass of substance which is deposited on an oscillator crystal during a deposition of thin layers, and by which the frequency of the crystal is changed. To obtain a longer, continuous measuring period, the measuring head is designed with a crystal changer in the form of a rotary support and to ensure that always identical surface areas of each crystal are coated, further apertured screens are provided in addition to an apertured screen which is fixed to the housing. These further screens are moved along with the individual crystals and can be pressed, in their measuring position, into heat conducting contact with the fixed screen. The movable screens may be designed as a single rotary screen plate which can be pressed against the fixed screen by a spring.
Abstract:
A prism for reflecting a laser includes: a single mounting cap at a first end of the prism, and first to seventh trihedral corner (TC) reflectors, each including a reflective surface including: three side edges, and three corners at respective intercept points between the side edges, wherein the seventh TC reflector, among the first to seventh TC reflectors, is on a second end of the prism opposite to the first end of the prism.
Abstract:
Systems, methods, and apparatus for acoustic inspection of a surface are described. An example system may include an inspection robot structured to traverse an inspection surface in a direction of travel. The inspection robot may include a payload having a plurality of arms, connected to the inspection robot, to rotate around respective ones of a plurality of axes while the inspection robot traverses the inspection surface, where each of the plurality of axes is in the direction of travel. A plurality of sleds may be connected to the plurality of arms, and a plurality of inspection sensors connected to the plurality of sleds. The plurality of inspection sensors may be spaced apart from each other at adjustable positions to inspect the inspection surface at an adjustable resolution.
Abstract:
An inspection robot may include an inspection chassis and a drive module with magnetic wheels coupled to the inspection chassis. The drive module may further include a motor and a gear box located between the motor and a magnetic wheels. The gear box may include a flex spline cup which interacts with the ring gear. The inspection robot may further include a magnetic shielding assembly to shield the motor and an associated electromagnetic sensor from electromagnetic interference generated by the magnetic wheels.
Abstract:
A method can include identifying an inspected object with an inspection device; viewing the inspected object through an augmented reality device to identify points; and measuring a thickness of a layer at the inspection points. In response to detecting a region of interest on the surface of the inspected object, an image of the region of interest can be taken. By operation of communication circuits, at least the thickness measurements and images can be transmitted to a server system. A value of the inspected object can be adjusted based on at least the thickness measurements and images from the at least one inspection device. Corresponding devices and systems are also disclosed.
Abstract:
Methods and systems disclosed herein use acoustic energy to determine a gap between a wafer and an integrated circuit (IC) processing system and/or determine a thickness of a material layer of the wafer during IC processing implemented by the IC processing system. An exemplary method includes emitting acoustic energy through a substrate and a material layer disposed thereover. The substrate is positioned within an IC processing system. The method further includes receiving reflected acoustic energy from a surface of the substrate and a surface of the material layer disposed thereover and converting the reflected acoustic energy into electrical signals. The electrical signals indicate a thickness of the material layer.