Abstract:
A high power pulsed light generation device includes: a master clock generator that generates a master signal; an optical oscillator that generates a pulsed light synchronized with the master clock signal; an optical amplifier that amplifies the pulsed light emitted from the optical oscillator to output a high power pulsed light; a pump semiconductor laser that generates a pulsed light for pumping the optical amplifier; a driving unit that drives the pump semiconductor laser by a pulsed driving current synchronized with the master clock signal; and a control unit which controls the driving unit and controls a gain of the optical amplifier for each pulse by changing a pulse width of the pulsed drive current from driving unit so as to change the pulse width of the pumping pulsed light.
Abstract:
An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuously so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.
Abstract:
A method for monitoring a laser system including a plurality of laser modules connected in series, there being connected in parallel to each laser module a bypass arrangement for bridging the corresponding laser module, includes determining a first laser power of the laser system with a plurality of laser modules operational; activating the bypass arrangement of at least one laser module so that at least one of the plurality of laser modules is bypassed; determining a second laser power of the laser system with the at least one of the plurality of laser modules bypassed; and monitoring the laser system based on a difference between the first and second laser power.
Abstract:
A semiconductor laser excitation solid-state laser comprises: a planar waveguide-type solid-state laser element which is disposed on a solid-state laser substrate; an LD array; and a sub-mount substrate on which joining layers of two different thicknesses are formed on the same plane; wherein the planar waveguide-type solid-state laser element is joined to the sub-mount substrate on the surface on the opposite side of a surface on which the solid-state laser substrate is mounted, via a joining layer of one of the thicknesses out of the joining layers of the two different thicknesses, and the LD array is joined to the sub-mount substrate on the surface on a light-emitting layer side, via another joining layer of the other thickness out of the joining layers of the two different thicknesses.
Abstract:
A stereoscopic projection system and method of generating light that include two or three infrared lasers, two optical parametric oscillators, and six or seven second harmonic generators. Six colors of visible light are produced. Three bands of red, green, and blue form an image for the left eye of the viewer, while the other three bands of red, green, and blue form an image for the right eye of the viewer.
Abstract:
An optical power beam transmission systems, with a directional light transmitter and receiver. The transmitter contains an amplifying laser medium, and this together with a retroreflector in the receiver, forms a laser resonator. When lasing sets in, the receiver can extract optical power through an output coupler and convert it to electrical power. The gain medium may be a disc having a thickness substantially smaller than its lateral dimensions. The laser resonator is operated as a stable resonator to ensure safe operation. This is achieved by use of an adaptive optical element, for reducing the diameter of the energy beam impinging on the gain medium, thereby increasing the overlap between the energy beam and the gain medium. As the transmitter-receiver distance is changed, such as by movement of the receiver, the adaptive optical element focal length changes to ensure that the cavity remains within its stability zone.
Abstract:
A system, apparatus and method employing a laser with a split-head, V-assembly gain material configuration. Additionally, the present invention is directed to techniques to better dissipate or remove unwanted energies in laser operations. The present invention is also directed to techniques for better collimated laser beams, with single spatial mode quality (TEM00), with improved efficiency, in extreme environments, such as in outer space.
Abstract:
An apparatus for treatment of dental tissue has a first laser source optically connected to a first channel and the same first laser source optically connected to a second channel. The second laser source is optically connected to the first channel. That second laser source is designed to be pumped via the first channel by the diode laser to generate a power of radiation sufficient to cut hard dental tissue. The second channel is connected to a device for treatment of soft dental tissue and is designed to transmit radiation sufficient for treating soft dental tissue. The first laser source can be a diode laser designed to emit radiation of a wavelength selected from a range of 700 nm to 2700 nm. The second laser source can be a solid-state or fiber laser designed to emit a wavelength from a range of 2700 nm to 3000 nm.
Abstract:
A diode-laser bar stack includes a plurality of diode-laser bars having different temperature dependent peak-emission wavelengths. The stack is arranged such that the bars can be separately powered. This allows one or more of the bars to be “on” while others are “off”. A switching arrangement is described for selectively turning bars on or off, responsive to a signal representative of the temperature of the diode-laser bar stack, for providing a desired total emission spectrum.
Abstract:
Systems and methods provide laser pulse equalization at different pulse repetition frequencies (PRFs). After initially pumping a lasing medium from a first pumping level to a peak pumping level, a controller may cause a pump source to continue pumping the lasing medium according to a pulse equalization pumping curve. The equalization pumping curve may be determined based on testing laser pulse parameters at different PRFs to achieve an optimal equalization result of the pulse parameters. The optimization metric used to evaluate various equalization pumping curves may include a consistency of the pulse energy level, peak power level, and/or pulse width of the laser under different PRFs. The equalization pumping curve may be a descending curve from the peak pumping level to the first pumping level. The equalization pumping curve may be a linearly declining curve, a substantially exponentially declining curve, a parametrically declining curve, or any other curve type.