Abstract:
In one aspect, a method of operating a memory cell includes using different electrodes to change a programmed state of the memory cell than are used to read the programmed state of the memory cell. In one aspect, a memory cell includes first and second opposing electrodes having material received there-between. The material has first and second lateral regions of different composition relative one another. One of the first and second lateral regions is received along one of two laterally opposing edges of the material. Another of the first and second lateral regions is received along the other of said two laterally opposing edges of the material. At least one of the first and second lateral regions is capable of being repeatedly programmed to at least two different resistance states. Other aspects and implementations are disclosed.
Abstract:
A method of forming a non-volatile resistive oxide memory array includes forming a plurality of one of conductive word lines or conductive bit lines over a substrate. Metal oxide-comprising material is formed over the plurality of said one of the word lines or bit lines. A series of elongated trenches is provided over the plurality of said one of the word lines or bit lines. A plurality of self-assembled block copolymer lines is formed within individual of the trenches in registered alignment with and between the trench sidewalls. A plurality of the other of conductive word lines or conductive bit lines is provided from said plurality of self-assembled block copolymer lines to form individually programmable junctions comprising said metal oxide-comprising material where the word lines and bit lines cross one another.
Abstract:
Some embodiments include methods in which microwave radiation is used to activate dopant and/or increase crystallinity of semiconductor material during formation of a semiconductor construction. In some embodiments, the microwave radiation has a frequency of about 5.8 gigahertz, and a temperature of the semiconductor construction does not exceed about 500° C. during the exposure to the microwave radiation.
Abstract:
Strontium ruthenium oxide provides an effective interface between a ruthenium conductor and a strontium titanium oxide dielectric. Formation of the strontium ruthenium oxide includes the use of atomic layer deposition to form strontium oxide and subsequent annealing of the strontium oxide to form the strontium ruthenium oxide. A first atomic layer deposition of strontium oxide is preformed using water as an oxygen source, followed by a subsequent atomic layer deposition of strontium oxide using ozone as an oxygen source.
Abstract:
A system and method for operating a wireless network provides for sending a wakeup tone, periodically waking up from a sleep mode to listen for the wakeup tone, upon receiving the wakeup tone, listening for at least one second tone, the at least one second tone being one of (i) a tone in a frequency different from the wakeup tone and (ii) a pattern of tones including at least one frequency different from the wakeup tone, and upon receiving the at least one second tone, performing an action based on the at least one second tone.
Abstract:
Some embodiments include methods of reading memory cells. The memory cells have a write operation that occurs only if a voltage of sufficient absolute value is applied for a sufficient duration of time; and the reading is conducted with a pulse that is of too short of a time duration to be sufficient for the write operation. In some embodiments, the pulse utilized for the reading may have an absolute value of voltage that is greater than or equal to the voltage utilized for the write operation. In some embodiments, the memory cells may comprise non-ohmic devices; such as memristors and diodes.
Abstract:
Atomic layer deposition methods as described herein can be advantageously used to form a metal-containing layer on a substrate. For example, certain methods as described herein can form a strontium titanate layer that has low carbon content (e.g., low strontium carbonate content), which can result in layer with a high dielectric constant.
Abstract:
Atomic layer deposition methods as described herein can be advantageously used to form a metal-containing layer on a substrate. For example, certain methods as described herein can form a strontium titanate layer that has low carbon content (e.g., low strontium carbonate content), which can result in layer with a high dielectric constant.
Abstract:
Some embodiments include methods of forming diodes. The methods may include oxidation of an upper surface of a conductive electrode to form an oxide layer over the conductive electrode. In some embodiments, the methods may include formation of an oxidizable material over a conductive electrode, and subsequent oxidation of the oxidizable material to form an oxide layer over the conductive electrode. In some embodiments, the methods may include formation of a metal halide layer over a conductive electrode. Some embodiments include diodes that contain a metal halide layer between a pair of diode electrodes.
Abstract:
A system and method for operating a wireless network provides for sending a wakeup tone, periodically waking up from a sleep mode to listen for the wakeup tone, upon receiving the wakeup tone, listening for at least one second tone, the at least one second tone being one of (i) a tone in a frequency different from the wakeup tone and (ii) a pattern of tones including at least one frequency different from the wakeup tone, and upon receiving the at least one second tone, performing an action based on the at least one second tone.