摘要:
A semiconductor element which is capable of operating at a high speed, high in an electric current drive capability, and small in fluctuation among a plurality of elements, and a semiconductor device including the semiconductor element are provided. The semiconductor element has a first crystalline semiconductor region including plural crystal orientations without practically having a grain boundary on an insulating surface, the first crystalline semiconductor region being provided to be jointly connected to a conductive region including the first crystalline semiconductor region and a second crystalline semiconductor region, in which the conductive region is provided astride insulating films extending in a linear stripe pattern.
摘要:
To provide a transistor which includes an oxide semiconductor and is capable of operating at high speed or a highly reliable semiconductor device including the transistor, a transistor in which an oxide semiconductor layer including a pair of low-resistance regions and a channel formation region is provided over an electrode layer, which is embedded in a base insulating layer and whose upper surface is at least partly exposed from the base insulating layer, and a wiring layer provided above the oxide semiconductor layer is electrically connected to the electrode layer or a part of a low-resistance region of the oxide semiconductor layer, which overlaps with the electrode layer.
摘要:
An uneven portion is formed on a substrate extending in a linear shape stripe pattern, convex portions of an insulating film that intersects with a crystalline semiconductor film divided into island shapes are removed, and an amorphous semiconductor film is formed on the insulating film. The semiconductor film is melted and flows into concave portions of the insulating film, where it crystallizes, and the semiconductor film that remains on the convex portions of the insulating film is removed. A semiconductor film divided into island shapes is then formed from the semiconductor film formed in the concave portions, the convex portions of the insulating film are removed in portions where channel forming regions are to be formed, thus exposing side surface portions of the semiconductor film. A gate insulating film and a gate electrode contacting the side surface portions and upper surface portions of the semiconductor film are then formed.
摘要:
An insulating film having depressions and projections are formed on a substrate. A semiconductor film is formed on the insulating film. Thus, for crystallization by using laser light, a part where stress concentrates is selectively formed in the semiconductor film. More specifically, stripe or rectangular depressions and projections are provided in the semiconductor film. Then, continuous-wave laser light is irradiated along the stripe depressions and projections formed in the semiconductor film or in a direction of a major axis or minor axis of the rectangle.
摘要:
The present invention provides a semiconductor device capable of being mass-produced and a manufacturing method of the semiconductor device. The present invention also provides a semiconductor device using an extreme thin integrated circuit and a manufacturing method of the semiconductor device. Further, the present invention provides a low power consumption semiconductor device and a manufacturing method of the semiconductor device. According to one aspect of the present invention, a semiconductor device that has a semiconductor nonvolatile memory element transistor over an insulating surface in which a floating gate electrode of the memory transistor is formed by a plurality of conductive particles or semiconductor particles is provided.
摘要:
An insulating film with a linear concave portion is formed and a semiconductor film is formed thereon by deposition. The semiconductor film is irradiated with laser light to melt the semiconductor film and the melted semiconductor is poured into the concave portion, where it is crystallized. This makes distortion or stress accompanying crystallization concentrate on other regions than the concave portion. A surface of this crystalline semiconductor film is etched away, thereby forming in the concave portion a crystalline semiconductor film which is covered with side walls of the concave portion from the sides and which has no other grain boundaries than twin crystal. TFTs and memory TFTs having this crystalline semiconductor film as their channel regions are highly reliable, have high field effect mobility, and are less fluctuated in characteristic. Accordingly, a highly reliable semiconductor memory device which can operate at high speed is obtained.
摘要:
In the invention, a low concentration impurity region is formed between a channel formation region and a source region or a drain region in a semiconductor layer and covered with a gate electrode layer in a thin film transistor The semiconductor layer is doped obliquely to the surface thereof using the gate electrode layer as a mask to form the low concentration impurity region. The semiconductor layer is formed to have an impurity region including an impurity element for imparting one conductivity which is different from conductivity of the thin film transistor, thereby being able to minutely control the properties of the thin film transistor.
摘要:
The invention is to provide a high-productivity method for fabricating a TFT device having different LDD structures on one and the same substrate, and the TFT device. Specifically, the invention provides a novel TFT structure, and a high-productivity method for fabricating it. A Ta film or a Ta-based film having good heat resistance is used for forming interconnections, and the interconnections are covered with a protective film. The interconnections can be subjected to heat treatment at high temperatures (400 to 700° C.), and, in addition, the protective film serves as an etching stopper. In the peripheral driving circuit portion in the device, TFTs having an LDD structure are disposed in a self-aligned process in which is used side walls 126 and 127; while in the pixel matrix portion therein, TFTs having an LDD structure are disposed in a non-self-aligned process in which is used an insulator 125.
摘要:
To provide a semiconductor device composed of a semiconductor element or a group of semiconductor elements, in which a crystalline semiconductor film having as few grain boundaries as possible in a channel formation region is formed on an insulating surface, which can operate at high speed, which have high current drive performance, and which are less fluctuated between elements. The method of the present invention includes: forming an insulating film with an opening on a substrate having an insulating surface; forming on the insulating film and over the opening an amorphous semiconductor film or a polycrystalline semiconductor film that has randomly-formed grain boundaries; forming a crystalline semiconductor film by melting the semiconductor film, pouring the melted semiconductor into the opening of the insulating film, and crystallizing or re-crystallizing the semiconductor film; and removing the crystalline semiconductor film except a portion of the crystalline semiconductor film that is in the opening to form a gate insulating film, which is in contact with the top face of the crystalline semiconductor film, and a gate electrode.
摘要:
It is a problem to provide a semiconductor device production system using a laser crystallization method capable of preventing grain boundaries from forming in a TFT channel region and further preventing conspicuous lowering in TFT mobility due to grain boundaries, on-current decrease or off-current increase. An insulation film is formed on a substrate, and a semiconductor film is formed on the insulation film. Due to this, preferentially formed is a region in the semiconductor film to be concentratedly applied by stress during crystallization with laser light. Specifically, a stripe-formed or rectangular concavo-convex is formed on the semiconductor film. Continuous-oscillation laser light is irradiated along the striped concavo-convex or along a direction of a longer or shorter axis of rectangle.