Abstract:
Electrodeionization apparatus for purifying water includes a cathode, an anode, and a plurality of alternating anion permeable membranes and cation permeable membranes between the cathode and anode that define concentrating and diluting flow channels between adjacent pairs of membranes. Each concentrating flow channel includes a first guard channel adjacent to the anion permeable membrane, a second guard channel adjacent to the cation permeable membrane, and a brine channel between the first and second guard channels. The first and second guard channels have water with lower concentration of dissolved ions than water in the brine channel so as limit parasitic transfer from a concentrating flow channel to a diluting flow channel.
Abstract:
In producing deionized water by electrodeionization according to the present invention, feed water and concentrating water are flowed into the ion depletion compartments and the concentration compartments, respectively, in such a way that the current direction of feed water being fed into the ion depletion compartments is opposite to the current direction of concentrating water being fed into the concentration compartments. Further, feed water flowed into each ion depletion compartment is first passed through an anion exchange material layer, and subsequently passed through other ion exchange material layer(s). The migration of anions into the concentration compartments is promoted in the portions of such anion exchange material layers through which feed water is first passed. As a result, the silica removal rate is improved.
Abstract:
Ion exchange materials, as particulate and membranes, are modified by permanently attaching counter ions to a portion of the ion exchange sites. The permanent attachment of the counter ions forms semiconductor junctions which act as mini anodes, or cathodes, to significantly increase the ability to oxidize or reduce a species to be treated, or split water, in an electrolytic reactor. The non-converted transfer sites in the ion exchange material also significantly increase the mobility of the ionic species in the electrolyte. The ion exchange material may be a monobed of either modified anion exchange material or modified cation exchange material, or a suitable mixed bed of both, depending upon the application. When the anode is in direct contact with a modified cation exchange material and under the influence of direct current, free radical hydroxyl and regenerant hydrogen are formed. When the cathode is in direct contact with a modified anion exchange material and under the influence of direct current, free radical hydrogen and regenerant hydroxyl are formed. Alternatively, the modified ion exchange material can be separated from both the anode and the cathode, and regenerant hydrogen and hydroxyl are produced at the semiconductor junctions.
Abstract:
Improved electrodialysis (ED) stacks are disclosed having one or more components selected from the group:a) cation exchange membranes having ion exchange groups predominantly sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups or membranes which are selective to monovalent cations and simultaneously therewith, cation exchange granules selective to monovalent cations as packing in the dilute compartments;b) anion exchange membranes having as ion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and substantially no primary, secondary and/or tertiary amine and/or phosphine groups or membranes which are selective to monovalent anions simultaneously therewith, anion exchange granules selective to monovalent anions as packing in the dilute compartments;c) as packing in the dilute compartment, anion exchange granules which are selective to monovalent anions, or cation exchange granules which are selective to monovalent cations, or cation exchange granules having as exchange groups a predominant amount of sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups, or anion exchange granules consisting of organic polymers having as anion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and almost no primary, secondary and/or tertiary amine and/or phosphine groups.
Abstract:
It concerns a monomer, a polymer obtained from the monomer and a process for obtaining the said polymer. The monomer consists of a polyether containing at least 3 ether units and pyrrole or thiophene units bonded to the ends of the chains of this polyether via, for each of these heterocycic compounds, either their carbon atoms in the 3,3'-positions of their heterocycles or, as regards more particularly the pyrrole groups, via their respective nitrogen atoms, the 2- and 2'-positions of these heterocycles being, however, free of all substitutions or, at the very most, substituted by easily removable groups (protective groups, for example). Application to the purification and recovery of metal ions such as radioactive silver.
Abstract:
An electrode for use in electrochemical ion exchange which includes a hydrolysable metal phosphate such as zirconium phosphate (Zr(HPO.sub.4).sub.2) which has been hydrolysed at least in part is regenerated. The electrode is made the anode of an electrochemical cell in which the electrolyte is an aqueous solution containing one or more phosphate ions provided, for example, by a dissolved salt (eg Na.sub.3 PO.sub.4, Na.sub.2 HPO.sub.4 or NaH.sub.2 PO.sub.4) or orthophosphoric acid, or both. Preferably, the electrolyte is acidic (eg pH 2). Operation of the cell reverses the hydrolysis reaction and enhances the performance of the electrode.
Abstract translation:用于电化学离子交换的电极,其包括至少部分被水解的可水解金属磷酸盐如磷酸锆(Zr(HPO 4)2)。 电极被制成电化学电池的阳极,其中电解质是含有例如由溶解的盐(例如Na 3 PO 4,Na 2 HPO 4或NaH 2 PO 4)或正磷酸或两者提供的一种或多种磷酸根离子的水溶液。 优选地,电解质是酸性的(例如pH 2)。 电池的操作反转水解反应并提高电极的性能。
Abstract:
A flow-through capacitor and a controlled charge chromatography column system using the capacitor for the purification of a fluid-containing material, which column comprises an inlet for a fluid to be purified and an outlet for the discharge of the purified fluid, and a flow-through capacitor disposed within the column. The flow-through capacitor comprises a plurality of spirally-wound, stacked washer or rods to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to one side of the backing layer, such as carbon fibers, and a second high surface area conductive layer secured to the opposite side of the backing layer, the high surface area material layers arranged to face each other and separated by a nonconductive, ion-permeable spacer layer to insulate electrically the backing and conductive layer. The system includes a DC power source to charge the respective conductive layers with different polarities whereby a fluid-containing material passing through the column is purified by the electrically conductive, high surface area stationary phase and the retention thereof onto the high surface area layer and permitting, for example, the purification of aqueous solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
Electrically regenerable desalting apparatus having the desalting compartment packed with ion exchangers produced by utilizing radiation-initiated graft polymerization, in which said ion exchangers are nonwoven fabrics in the form of a fiber assembly and a cation exchanger and an anion exchanger are disposed in a face-to-face relationship, with a porous material being interposed between the two ion exchangers. Having the ability to reject ions from liquids, the apparatus is particularly suited to the production of pure water in the electrical power generating industries (including the nuclear industry), electronic industry and the pharmaceuticals manufacturing industry, as well as to the desalting of thick fluids encountered in food and chemical manufacturing processes.
Abstract:
Electrodeionization apparatus having a novel polarity reversal protocol designed to provide continuous, high-quality product fluid is described. The protocol involves substitution of a recirculating fluid stream established in an ion-concentrating compartment by a fluid stream having a lower ionic concentration, while maintaining fluid flow through an adjacent ion-depleting compartment. A method and protocol for modifying the ionic makeup of compartment ion exchange material and fluids are also provided. A flow reversal protocol is also provided, during which high-quality fluid product is recovered from the inventive apparatus. The polarity reversal protocol and flow reversal protocol may each be effected separately, or the flow reversal may be introduced into the sequence of the polarity reversal protocol. The inventive electrodeionization apparatus is arranged in a novel cell pair grouping configuration and oriented such that fluid flow through an ion-concentrating compartment is in a substantially upward direction, facilitating efficient removal of gas generated in the ion-concentrating compartment.
Abstract:
A membrane module in which non-porous membranes are bonded to spacer elements, which elements are in turn bonded to each other to create a membrane support zone as a result of contact with the surface of the membrane opposite the surface to which the membrane is bonded. The membrane is restrained from peeling from the membrane bond by the support zone under opposing pressure as may be caused by fluid flowing past the membrane. The preferred use of such a membrane module is for continuous electrodeionization processes.