Abstract:
A field emission display having an n-channel high voltage thin film transistor is disclosed. According to the present invention, a signal for driving pixels controls by the nHVTFT attached with each pixel, therefore, the signal voltage of row and column drivers is exceedingly decreased. As a result, it is possible to implement a field emission display capable of providing a high quality picture in a low consumption power, a low driving voltage and inexpensive to manufacture, and preventing a line cross talk using the nHVTFT. By using a cylindrical resistive body underlying a cone-shaped emitter tip, the present invention is to provide a field emission display having an excellent contollability and stability of the emission current, and a dynamic driving capability.
Abstract:
A field emission cold cathode element designed with the objects of enabling control of overcurrents that arise at times of discharge without adding a power source or complicating the operating circuits, realizing high-frequency operation and lower power consumption without giving rise to short-circuit damage due to discharge breakdown, and moreover, suppressing increases in element temperature; wherein an n-type region underlying emitters is divided between three n-type semiconductor regions: a first n-type semiconductor region, a second n-type semiconductor region and a third n-type semiconductor region. A third n-type semiconductor region below the emitters formed so as to be surrounded by a p-type semiconductor region, a second n-type semiconductor region below the third n-type semiconductor region formed so as to be surrounded by a p-type semiconductor region, and a first n-type semiconductor region formed below the second n-type semiconductor region; wherein the cross section of the second n-type semiconductor region is smaller than the cross section of the third n-type semiconductor region, thereby producing an n-type region made up of three n-type semiconductor regions that has a constricted shape.
Abstract:
A field emission display includes a substrate, a plurality of emitters formed on the substrate, a semiconductor device formed in or on the substrate for controlling the flow of electrons to the emitters and a dielectric layer formed on the substrate. An extraction grid is formed on the dielectric layer substantially in a plane of tips of the plurality of emitters and includes openings each surrounding one of the emitters. The display also includes a transparent viewing screen, a transparent conductor formed on the viewing screen and a cathodoluminescent layer formed on the transparent conductor. The semiconductor device includes a gate dielectric and a field oxide. Significantly, the field oxide includes an interfacial region acting as a trapping and recombination site for mobile charge carriers. As a result, the semiconductor device is more robust and is better able to resist parameter shifts or performance degradation due to exposure to X-rays and photons that are incidentally generated along with the desired images on the display. This results in a more robust field emission display.
Abstract:
A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film.The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.
Abstract:
A field-emission cold cathode having emitters 9 formed on silicon substrate 1, and a gate electrode film 7 formed on insulation film 6 and having openings over the emitters, further includes trenches 3 formed in silicon substrate 1, a plurality of emitters formed on regions surrounded by trenches 3, and n-type regions 5 formed on the silicon substrate directly below the emitters. Breakdowns caused by field concentrations brought about by the spread of current directly below the emitters can thus be prevented, and thus the emitter pitch within regions surrounded by trenches can be determined at will. When high voltage is impressed due to a discharge, the resistance connected to the emitters prevents the flow of large currents to the emitters and the occurrence of short-circuit damage.
Abstract:
A field emitter array device includes a ceramic substrate member having a multiplicity of through conductive vias therein. An insulative material layer is located on the ceramic substrate member. An addressable array of gate and emitter line elements is located on the insulative material and is conductively coupled to the through substrate conductive vias. A backside connector is located on the ceramic substrate member and conductively coupled to the vias for connection of the ceramic substrate member with an array driver device for the addressable array of emitter and gate line elements. A field emitter array of field emitter elements on the insulative material layer of the ceramic substrate member which are operatively coupled with the addressable array of gate and emitter line elements.
Abstract:
A cold cathode field emission device is described. A key feature of its design is that groups of microtips share a single conductive disk with a reliable ballast resistor being interposed between each of these conductive disks and the cathode conductor. Additionally, a resistor, rather than a conductor, is used to connect the gate conductive disk to the gate electrode. The latter is arranged so as not to overlap with the cathode electrode. The cathode and gate conductive disks ensure that the ballast resistance associated with each microtip is essentially the same.
Abstract:
Electron field emission devices (cold cathodes), vacuum microelectronic devices and field emission displays which incorporate cold cathodes and methods of making and using same. More specifically, cold cathode devices comprising electron emitting structures grown directly onto a substrate material. The invention also relates to patterned precursor substrates for use in fabricating field emission devices and methods of making same and also to catalytically growing other electronic structures, such as films, cones, cylinders, pyramids or the like, directly onto substrates.
Abstract:
The present invention provides field emitter arrays (FEAs) having incorporated with metal oxide semiconductor field effect transistors (MOSFETs) and method for fabricating the same which realizes a simultaneous fabrication of two kinds of devices, namely, the FEA and MOSFETs, by using common processing steps among the processes of fabricating the Si-FEA or the metal FEA and the MOSFETs, wherein the method comprises steps of forming field emission tips and active regions for MOSFETs by oxidizing selected portions of the silicon nitride layer, forming a gate insulating oxide layers for the FEA and field oxide layers for MOSFETs simultaneously by the LOCOS method and connecting gate electrodes(row line) and cathode electrodes(column line) of the FEA to MOSFETs.
Abstract:
A method for fabricating a field emission display (FED) with improved junction leakage characteristics is provided. The method includes the formation of a light blocking element between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED. The light blocking element protects the junctions from light formed at the display screen and light generated in the environment striking the junctions. Electrical characteristics of the junctions thus remain constant and junction leakage is improved. The light blocking element may be formed as an opaque light absorbing or light reflecting layer. In addition, the light blocking element may be patterned to protect predetermined areas of the baseplate and may provide other circuit functions such as an interconnect layer.