摘要:
A method for introducing one or more impurities into nano-structured materials. The method includes providing a nanostructured material having a feature size of about 100 nm and less. The method includes subjecting a surface region of the nanostructured material to one or more impurities to form a first region having a first impurity concentration within a vicinity of the surface region. In a specific embodiment, the method includes applying a driving force to one or more portions of at least the nanostructured material to cause the first region to form a second region having a second impurity concentration.
摘要:
Substantially enhanced field emission properties are achieved by using a process of covering a non-adhesive material (for example, paper, foam sheet, or roller) over the surface of the CNTs, pressing the material using a certain force, and removing the material.
摘要:
The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air. The method comprises coating an AFM tip with a hydrophobic compound, the hydrophobic compound being selected so that AFM imaging performed using the coated AFM tip is improved compared to AFM imaging performed using an uncoated AFM tip. Finally, the invention provides AFM tips coated with the hydrophobic compounds.
摘要:
A method and apparatus for assembly of small structures is disclosed. The present invention discloses electron beams created from one or more nanotips in an array operated in a field emission mode that can be controlled to apply heat to very well defined spots. The multiple electron beams may be generated and deflected and applied to electron beam heating and welding applications.
摘要:
A scanning probe microscopy (SPM) inspection and/or modification system which uses SPM technology and techniques. The system includes various types of microstructured SPM probes for inspection and/or modification of the object. The components of the SPM system include microstructured calibration structures. A probe may be defective because of wear or because of fabrication errors. Various types of reference measurements of the calibration structure are made with the probe or vice versa to calibrate it. The components of the SPM system further include one or more tip machining structures. At these structures, material of the tips of the SPM probes may be machined by abrasively lapping and chemically lapping the material of the tip with the tip machining structures.
摘要:
The present invention includes a method of fabricating organic/inorganic composite nanostructures on a substrate comprising depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructures comprises arrays of lines and/or dots having widths/diameters less than 1 micron. The present invention also includes a device comprising an organic/inorganic composite nanoscale region chemically bonded to a substrate, wherein the nanoscale region, wherein the nanoscale region has a nanometer scale dimension other than height.
摘要:
Disclosed is a probe of a scanning probe microscope having a sharp tip and an increased electric characteristic by fabricating a planar type of field effect transistor and manufacturing a conductive carbon nanotube on the planar type field effect transistor. To achieve this, the present invention provides a method for fabricating a probe having a field effect transistor channel structure including fabricating a field effect transistor, making preparations for growing a carbon nanotube at a top portion of a gate electrode of the field effect transistor, and generating the carbon nanotube at the top portion of the gate electrode of the field effect transistor.
摘要:
A method and apparatus for assembly of small structures is disclosed. The present invention discloses electron beams created from one or more nanotips in an array operated in a field emission mode that can be controlled to apply heat to very well defined spots. The multiple electron beams may be generated and deflected and applied to electron beam heating and welding applications.
摘要:
A method of fabricating a tunneling nanotube field effect transistor includes forming in a nanotube an n-doped region and a p-doped region which are separated by an undoped channel region of the transistor. Electrical contacts are provided for the doped regions and a gate electrode that is formed upon a gate dielectric layer deposited on at least a portion of the channel region of the transistor.
摘要:
A scanning probe microscopy (SPM) inspection and/or modification system which uses SPM technology and techniques. The system includes various types of microstructured SPM probes for inspection and/or modification of the object. The components of the SPM system include microstructured calibration structures. A probe may be defective because of wear or because of fabrication errors. Various types of reference measurements of the calibration structure are made with the probe or vice versa to calibrate it. The components of the SPM system further include one or more tip machining structures. At these structures, material of the tips of the SPM probes may be machined by abrasively lapping and chemically lapping the material of the tip with the tip machining structures.