Abstract:
A method of depth map generation is disclosed. The method comprises the steps of: scaling down a video unit and a previous video unit to generate a reduced video unit and a reduced previous video unit; dividing the reduced video unit into N1 portions and a buffer into N2 storing units; performing a motion estimation for a target pixel of the reduced video unit to obtain a motion vector based on pixels in a preset search window established in the reduced previous video unit; assigning a depth value to the target pixel according to the motion vector; storing the target pixel in one of the N2 storing units sequentially; and, repeating the steps of performing, assigning and storing until all pixels of the reduced video unit are processed to obtain a motion depth map.
Abstract:
A novel nanocomposite including hydroxyapatite-gelatin bioceramic material and dopamine, wherein the dopamine undergoes an oxidative self-polymerization reaction to form the novel nanocomposite. The nanocomposite displays superior mechanical strength, elasticity, biocompatibility and forming capabilities and is targeted for bone repairs and template-assisted tissue engineering applications. In addition, improved aminosilica-based hydroxyapatite-gelatin bioceramic bioceramics are disclosed.
Abstract:
An adjustable driving tool includes a handle and a driving rod. The handle has a limiting portion disposed in the handle and a slot. The limiting portion has an inner space communicating with openings of a first sleeve portion and a second sleeve portion. The slot communicates with the inner space. The handle provided with a pin disposed through the inner space, and the first and second sleeve portions are disposed around the pin. The driving rod has a working end and a fixation end having an elongate through hole around the pin. The fixation end is disposed into the inner space through the slot. The driving rod is slidable relative to the pin, and the fixation end is .controllably selectively inserted into the first sleeve portion or the second sleeve portion so that the driving rod is held.
Abstract:
An improved semiconductor device is provided whereby the semiconductor device is defined by a layered structure comprising a first dielectric layer, a data storage material disposed on the first dielectric layer, and a second dielectric layer disposed on the data storage material, the layered structured substantially forming the outer later of the semiconductor device. For example, the semiconductor device may be a SONOS structure having an oxide-nitride-oxide (ONO) film that substantially surrounds the SONOS structure. The invention also provides methods for fabricating the semiconductor device and the SONOS structure of the invention.
Abstract:
An electronic device includes a display module, a base and a keyboard module. The display module is pivoted on the base. The keyboard module is disposed on the base. The keyboard module has a plurality of keys. Each of the keys includes a main body and an imprinted structure. The main body has a top surface. The imprinted structure is disposed on the top surface of the main body and includes a light guiding portion and a light scattering portion. A light emitted by the display module illuminates the keyboard module. The light is guided towards a specific direction when the light passes through the light guiding portion, and the light is scattered in other directions when the light passes through the light scattering portion.
Abstract:
The invention relates to a method and apparatus for evaluating a network and for predicting network performance for a higher order modulation by analyzing network signals modulated using a lower order modulation format. A margin index may be generated for the current or projected modulation formats based on displacement vectors for received symbols to indicate a margin remaining before a codeword error occurs to alert the network operator of potential performance issues before actual codeword errors occur.
Abstract:
A bonding pad structure includes a substrate and a first conductive island formed in a first dielectric layer and disposed over the substrate. A first via array having a plurality of vias is formed in a second dielectric layer and disposed over the first conductive island. A second conductive island is formed in a third dielectric layer and disposed over the first via array. A bonding pad is disposed over the second conductive island. The first conductive island, the first via array, and the second conductive island are electrically connected to the bonding pad. The first via array is connected to no other conductive island in the first dielectric layer except the first conductive island. No other conductive island in the third dielectric layer is connected to the first via array except the second conductive island.
Abstract:
A method includes providing a first mask pattern over a substrate, forming first spacers adjoining sidewalls of the first mask pattern, removing the first mask pattern, forming second spacers adjoining sidewalls of the first spacers, forming a filling layer over the substrate and between the second spacers, and forming a second mask pattern over the substrate.
Abstract:
The present invention provides novel, rationally designed lowered affinity antibodies for use in various in vivo and in vitro applications. The antibodies of the present invention have variable domains that have been designed to reduce or eliminate the antigen binding activity of the parental antibody without altering the overall 3 dimensional antibody structure. Using the antibodies of the present invention in various assays allows researchers to distinguish effects that result from specific antigen-antibody interactions from other, non-specific antibody effects.