Abstract:
A slurry composition includes an acidic aqueous solution and one or both of, an amphoteric surfactant and a glycol compound. Examples of the amphoteric surfactant include a betaine compound and an amino acid compound, and examples of the amino acid compound include lysine, proline and arginine. Examples of the glycol compound include diethylene glycol, ethylene glycol and polyethylene glycol.
Abstract:
Disclosed is a bitmap structure which enables the size of a bitmap field containing reception result information to be significantly reduced while fully performing its acknowledgment function. To this end, a message region for recording indicators, which enables reception success or failure for the maximum allowable SN level packets treatable by block ACK to be confirmed, is assigned. A message region for recording only the reception results for unsuccessfully received packets is also assigned. A receiving party confirms the unsuccessfully received packets through the indicators, and retransmits the unsuccessfully received packets. Also, a transmitting party provides the number of SN level packets and the maximum number of fragmentation packets to the receiving party. The receiving party determines an optimized bitmap configuration scheme, and transmits the reception results for the respective fragmentation packets to the transmitting party based on the determined bitmap configuration scheme.
Abstract:
In the data transmission method, a MAC layer receives data from an upper layer, classifies the data according to destination addresses and traffic identifiers, aggregates the data by destination address and traffic identifier as a first transmission unit, aggregates the first transmission units having the identical destination address as a second transmission unit, and transmits the second transmission units having different destination addresses in a single frame. The data transmission method allows packets transferred from the upper layer to be hierarchically aggregated by DAs and TIDs and then packaged into a data unit for each destination such that it is possible to transmit the data at an optimal data rate for each destination terminal.
Abstract:
A method of forming a silicon oxide layer of a semiconductor device comprising coating a spin-on glass (SOG) composition including perhydropolysilazane having a compound of the formula (SiH2NH2)n where n represents a positive integer on a semiconductor substrate having a surface discontinuity, to form a planar SOG layer; and forming a silicon oxide layer with a planar surface by implementing a first heat treatment to convert an SOG solution into oxide and a second heat treatment to densify thus obtained oxide. The silicon oxide layer of the present invention can bury a gap between gaps of VLSI having a high aspect ratio and gives the same characteristics as a CVD oxide layer. Further, the oxidation of silicon in the active region is restrained in the present invention to secure dimension stability. Also disclosed is a semiconductor device made by the method.
Abstract:
Non-volatile memory devices and related methods are provided. The non-volatile memory devices include a memory cell array having a plurality of cell strings, each cell string including: a plurality of memory cells stacked in a direction perpendicular to a substrate, a ground selection transistor between the plurality of memory cells and the substrate, and a string selection transistor between the plurality of memory cells and a bit line; an address decoder coupled to the plurality of memory cells in the plurality of cell strings through word lines, to the string selection transistors in the plurality of cell strings through string selection lines, and to the ground selection transistors in the plurality of cell strings through a ground selection line; a read/write circuit coupled to the string selection transistors in the plurality of cell strings through the bit lines; and control logic configured to adjust a substrate voltage applied to the substrate such that threshold voltages of the ground selection transistors are higher than a predetermined level during read operations for at least one of the plurality of memory cells in the plurality of cell strings.
Abstract:
An electroless surface treatment plated layer of a printed circuit board, a method for preparing the same, and printed circuit board including the same. The electroless surface treatment plated layer includes: electroless nickel (Ni) plated coating/palladium (Pd) plated coating/gold (Au) plated coating, wherein the electroless nickel, palladium, and gold plated coatings have thicknesses of 0.02 to 1 μm, 0.01 to 0.3 μm, and 0.01 to 0.5 μm, respectively. In the electroless surface treatment plated layer of the printed circuit board, a thickness of the nickel plated coating is specially minimized to 0.02 to 1 μm, thereby making it possible to form an optimized electroless Ni/Pd/Au surface treatment plated layer.
Abstract:
In the data transmission method, a MAC layer receives data from an upper layer, classifies the data according to destination addresses and traffic identifiers, aggregates the data by destination address and traffic identifier as a first transmission unit, aggregates the first transmission units having the identical destination address as a second transmission unit, and transmits the second transmission units having different destination addresses in a single frame. The data transmission method allows packets transferred from the upper layer to be hierarchically aggregated by DAs and TIDs and then packaged into a data unit for each destination such that it is possible to transmit the data at an optimal data rate for each destination terminal.
Abstract:
Disclosed is a frame transmission method using precoding for supporting MU-MIMO, which facilitates to reduce overhead of a downlink frame in a wireless communication system of FDD method, and a base station supporting that method. The frame transmission method comprises calculating a precoding matrix of a present frame based on channel state information (CSI) of each mobile station and a precoding matrix of a prior frame; precoding a dedicated pilot and downlink data to be transmitted to the mobile station by the use of precoding matrix of the present frame; and transmitting a downlink frame including the precoded dedicated pilot and precoded downlink data to the corresponding mobile station.
Abstract:
A method of forming patterns of a semiconductor device may include forming a photoresist layer that includes a photo acid generator (PAG) and a photo base generator (PBG), generating an acid from the PAG in a first exposed portion of the photoresist layer by first-exposing the photoresist layer, and generating a base from the PBG in a second exposed portion of the photoresist layer by second-exposing a part of the first exposed portion and neutralizing the acid. The method may also include baking the photoresist layer after the first and second-exposing and deblocking the photoresist layer of the first exposed portion in which the acid is generated to form a deblocked photoresist layer, and forming a photoresist pattern by removing the deblocked photoresist layer by using a developer.
Abstract:
A nonvolatile memory device comprises a bulk region and a plurality of memory cells connected to a source line and a plurality of wordlines. The method comprises applying a source line voltage to the source line with a first magnitude, applying a bulk voltage to the bulk region with a second magnitude lower than the first magnitude, and performing access operations on the plurality of memory cells while maintaining a substantially constant difference between the bulk voltage and the source line voltage.