摘要:
In general, in one aspect, a method includes forming a semiconductor fin. A first insulating layer is formed adjacent to the semiconductor fin. A second insulating layer is formed over the first insulating layer and the semiconductor fin. A first trench is formed in the second insulating layer and the first insulating layer therebelow. The first trench is filed with a polymer. A third insulating layer is formed over the polymer. A second trench is formed in the third insulating layer, wherein the second trench is above the first trench and extends laterally therefrom. The polymer is removed from the first trench. A capacitor is formed within the first and the second trenches.
摘要:
Recessed channel array transistor (RCAT) structures and method of formation are generally described. In one example, an electronic device includes a semiconductor substrate, a first fin coupled with the semiconductor substrate, the first fin comprising a first source region and a first drain region, and a first gate structure of a recessed channel array transistor (RCAT) formed in a first gate region disposed between the first source region and the first drain region, wherein the first gate structure is formed by removing a sacrificial gate structure to expose the first fin in the first gate region, recessing a channel structure into the first fin, and forming the first gate structure on the recessed channel structure.
摘要:
A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
摘要:
The present invention is a semiconductor device comprising a carbon nanotube body having a top surface and laterally opposite sidewalls formed on a substrate. A gate dielectric layer is formed on the top surface of the carbon nanotube body and on the laterally opposite sidewalls of the carbon nanotube body. A gate electrode is formed on the gate dielectric on the top surface of the carbon nanotube body and adjacent to the gate dielectric on the laterally opposite sidewalls of the carbon nanotube body.
摘要:
A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
摘要:
In one embodiment, a capacitor comprises a substrate, a first electrically insulating layer over the substrate, a fin comprising a semiconducting material over the first electrically insulating layer, a cap formed from a silicide material on the first semiconducting fin, a first electrically conducting layer over the first electrically insulating layer and adjacent to the fin, a second electrically insulating layer adjacent to the first electrically conducting layer and a second electrically conducting layer adjacent to the second electrically insulating layer.
摘要:
A transistor may be formed of different layers of silicon germanium, a lowest layer having a graded germanium concentration and upper layers having constant germanium concentrations such that the lowest layer is of the form Si1-xGex. The highest layer may be of the form Si1-yGey on the PMOS side. A source and drain may be formed of epitaxial silicon germanium of the form Si1-zGez on the PMOS side. In some embodiments, x is greater than y and z is greater than x in the PMOS device. Thus, a PMOS device may be formed with both uniaxial compressive stress in the channel direction and in-plane biaxial compressive stress. This combination of stress may result in higher mobility and increased device performance in some cases.
摘要:
Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer, source/drain extensions a distance beneath the metal gate, and lateral undercuts in the sides of the metal gate.
摘要:
The present invention is a semiconductor device comprising a semiconductor body having a top surface and laterally opposite sidewalls formed on a substrate. A gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of the semiconductor body.
摘要:
A method is described for forming an element of a microelectronic circuit. A sacrificial layer is formed on an upper surface of a support layer. The sacrificial layer is extremely thin and uniform. A height-defining layer is then formed on the sacrificial layer, whereafter the sacrificial layer is etched away so that a well-defined gap is left between an upper surface of the support layer and a lower surface of the height-defining layer. A monocrystalline semiconductor material is then selectively grown from a nucleation silicon site through the gap. The monocrystalline semiconductor material forms a monocrystalline layer having a thickness corresponding to the thickness of the original sacrificial layer.