Abstract:
A source container for use in a computer system executing problem determination tools in an integrated environment across a computer network, the source container comprising a list of pathways to a plurality of source files and module objects. A software development may create the source container independently or within the front end of a problem determination tool. The front end of the problem determination tools sends the source container to its engine, and only source files and module objects having a pathway in the source container are analyzed within the engine of the problem determination tool. Furthermore, the results of the analysis of only those source files and module objects having a pathway in the source container are returned to the front end of the problem determination tool for viewing by the software developer. The front ends of the tools of the integrated development environment, the source files, the module objects, the engines of the tools, and different tools may all be located on different servers and/or clients across a computer network.
Abstract:
The invention is directed to an optical device comprising refractive optical structures, wherein the refractive structures are characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material.
Abstract:
A quadrupole ion trap includes a switch 3 for switching a trapping voltage between discrete voltage levels VH, VL. This creates a digital trapping field for trapping precursor ions and product ions in a trapping region of the ion trap. A gating voltage is applied to a gate electrode 12 to control injection of source electrons into the ion trap. Application of the gating voltage is synchronised with the switching so that electrons are injected into the trapping region while the trapping voltage is at a selected one of the voltage levels and can reach the trapping region with a kinetic energy suitable for electron capture dissociation to take place.
Abstract translation:四极离子阱包括用于在离散电压V H,V L L之间切换捕获电压的开关3。 这产生了用于在离子阱的捕获区捕获前体离子和产物离子的数字捕获场。 施加门极电压到栅电极12以控制将源电子注入到离子阱中。 门控电压的施加与开关同步,使得电子注入捕获区域,同时捕获电压处于选定的一个电压电平并且可以以适合于电子捕获解离的动能达到捕获区域发生 。
Abstract:
A method for modifying the refractive index of an optical, polymeric material. The method comprises irradiating select regions of the optical, polymeric material with a focused, visible or near-IR laser having a pulse energy from 0.05 nJ to 1000 nJ. The irradiation results in the formation of refractive optical structures, which exhibit little or no scattering loss. The method can be used to modify the refractive index of an intraocular lens following the surgical implantation of the intraocular lens in a human eye. The invention is also directed to an optical device comprising refractive optical structures, which exhibit little or no scattering loss and are characterized by a positive change in refractive index.
Abstract:
A digital drive apparatus (FIG. 3) for quadrupole device such as a quadrupole ion trap has a digital signal generator (11, 13, 14; 24, 25, 26) and a switching arrangement (16, 17) which alternately switches between high and low voltage levels (V1, V2) to generate a rectangular wave drive voltage. A dipole excitation voltage is also supplied to the quadrupole device to excite resonant oscillatory motion of ions.
Abstract:
Various embodiments of the invention provide human proteins associated with cell growth, differentiation, and death (CGDD) and polynucleotides which identify and encode CGDD. Embodiments of the invention also provide expression vectors, host cells, antibodies, agonists, and antagonists. Other embodiments provide methods for diagnosing, treating, or preventing disorders associated with aberrant expression of CGDD.
Abstract:
The invention provides human human kinases (PKIN) and polynucleotides which identify and encode PKIN. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of PKIN.
Abstract:
An equivalent waveform for a distorted waveform used in timing and signal integrity analysis in the design of an integrated circuit is automatically generated. The equivalent waveform is produced by calculating the transition quantity of a first non-distorted waveform. The transition quantity is the amount of transition of the first non-distorted waveform that is required for the cell to produce an output waveform with a predetermined end voltage. The end point of the transition period for the distorted waveform is then determined based on when the distorted waveform has accumulated the same transition quantity. The equivalent waveform can then be formed by computing a second non-distorted waveform such that the end point of the transition period for the second non-distorted waveform coincides with the end point of the transition period for the distorted waveform.
Abstract:
The invention provides human transporters and ion channels (TRICH) and polynucleotides which identify and encode TRICH. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TRICH.
Abstract:
The invention provides human secreted proteins (SECP) and polynucleotides which identify and encode SECP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of SECP.