Abstract:
Organic photosensitive optoelectronic devices (“OPODs”) which include an exciton blocking layer to enhance device efficiency. Single heterostructure, stacked and wave-guide type embodiments. Photodetector OPODs having multilayer structures and an exciton blocking layer. Guidelines for selection of exciton blocking layers are provided.
Abstract:
An organic light emitting device (OLED) is disclosed for which the hole transporting layer, the electron transporting layer and/or the emissive layer, if separately present, is comprised of a non-polymeric material. A method for preparing such OLED's using vacuum deposition techniques is further disclosed.
Abstract:
An asymmetric twin waveguide (ATG) structure is disclosed that significantly reduces the negative effects of inter-modal interference in symmetric twin-waveguide structures and which can be effectively used to implement a variety of optical devices. The ATG structure of the invention can be monolithically fabricated on a single epitaxial structure without the necessity of epitaxial re-growth. To achieve the ATG structure of the invention, the effective index of the passive waveguide in the ATG is varied from that of a symmetric twin waveguide such that one mode of the even and odd modes of propagation is primarily confined to the passive waveguide and the other to the active waveguide. The different effective indices of the two coupled waveguides result in the even and odd modes becoming highly asymmetric. As a result, the mode with the larger confinement factor in the active waveguide experiences higher gain and becomes dominant. In a further embodiment, the active waveguide is tapered to reduce coupling losses of the optical energy between the passive waveguide and the active waveguide. In a further embodiment, a grating region is incorporated atop the passive waveguide to select certain frequencies for transmission of light through the passive waveguide.
Abstract:
Highly efficient photon recycling photosensitive optoelectronic device (POD) structures are disclosed which may include optical concentrating non-imaging collectors. Such device structures may be utilized with both organic and inorganic photoconverting heterostructures to enhance photoconversion efficiency. These photo recycling POD structures are particularly well suited for use with organic photoactive materials.
Abstract:
A photonic integrated circuit (PIC) device comprising two or more vertically stacked asymmetric waveguides is provided. A photo-detector PIC device comprises a coupling waveguide for providing low-coupling loss with an external optical fiber and for guiding primarily a first mode of light, a second waveguide vertically coupled to the first waveguide for guiding primarily a second mode of light having an effective index of refraction different from the first mode, and a photo-detector vertically coupled to the second waveguide. Light received at the coupling waveguide is moved into the second waveguide via a lateral taper in the second waveguide. The photo-detector PIC device may further comprise a third waveguide having an optical amplifier therein and positioned between the coupling waveguide and the second waveguide.
Abstract:
An organic light emitting device (OLED) which emits high intensity light is formed as a stack of individual OLEDs simultaneously emitting light of the same color.
Abstract:
Optical cavities in a stacked organic light emitting device (SOLEDs) can shift or attenuate the light emitted by the individual organic light emitting devices (OLEDs) in the stack. Interference caused by reflections within the stack, absorption, positioning of the light source, and the polarization of the emitted light can all determine how the spectra of the emitted light are affected by the SOLED structure. A detailed model that provides a good fit to measured SOLED emissions can be used to predict how a SOLED will affect light emitted by OLEDs. As a result, SOLED geometries that will optimize color saturation and external quantum efficiency can be predicted.
Abstract:
Light emitting devices including at least one pixel comprising a first light emitting stack and a second light emitting stack placed side-by-side. The first and second light emitting stacks each comprise a first OLED and a second OLED over the first OLED. The first light emitting stack further includes a downconversion layer under the first OLED. Together, the first and second stacks are capable of emitting any visible color of light.
Abstract:
Certain crystalline organic semiconductor compounds, such as 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), when deposited by an ultrahigh vacuum process of organic molecular beam deposition, form highly ordered "quasi-epitaxial" films (32). Due to asymmetries in the molecular crystal structure of such compounds, the ordering of the films results in giant asymmetries in their dielectric properties. Such large dielectric asymmetries permit the construction of a variety of devices, including optical isolators (38), optically isolated lasers (48), optical isolated optical amplifiers (64), polarization-selective photodiodes (76), and metal-organic-inorganic semiconductor-metal detectors, among others.
Abstract:
An InGaAs photodiode is described in which a double layer of silicon nitride on the front surface serves several functions; both layers passivate the surface; an opening in the lower layer provides a diffusion mask for forming the p-n junction; and a narrower opening in the upper silicon nitride layer provides a deposition mask for forming a restricted area contact. In order to reduce strain near the junction, and hence reduce leakage currents and enhance reliability, the contact geometry has a narrow pedestal portion which contacts the surface in a zone remote from the junction edges and has a wider cap portion which is formed on the pedestal portion to seal the surface from the introduction of contaminants. The photodiode may be back-illuminated or front-illuminated.