Abstract:
A high-resolution pressure-sensing device is disclosed. The device includes an insulating flexible matrix having a plurality of filler particles. Application of a force to the matrix causes compression of the matrix. This results in the filler particles occupying a greater amount of space within the matrix relative to when no force is applied. A detector attached to the matrix detects or measures the volume of the filler particles relative to the volume of the matrix, and therefore determines the force applied to the matrix. Preferably, the resistivity of the matrix is inversely proportional to the volume percent of the filler particles, in which case the detector is a resistance measuring circuit.
Abstract:
A method for underfilling and encapsulating a flip chip in one step is disclosed. The flip chip is immersed in a polymer bath to apply a coating of the polymer to the surface of the flip chip except for the distal end of the conductive projections on the flip chip electrically conductive pads. The coated flip chip is exposed to ultraviolet light or heat (e.g., IR radiation) to surface cure a skin over the polymer coating. The skin-cured flip chip is placed on a substrate which is then heated to reflow the conductive material from the projections and to cause the polymer from the coating to underfill the flip chip and thermally cure to encapsulate and underfill the flip chip.
Abstract:
A method of curing adhesives of a die attach material to reduce the formation of voids at the resulting bondline, defined by the interface between the adhesive and the surface of a die being attached. The method includes applying a relatively high pressure, in addition to a relatively high temperature, to cure the adhesive material.
Abstract:
A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
Abstract:
An apparatus and method for adhesively bonding a back surface of a substrate to an active surface of at least one semiconductor die having adhesive tape interposed therebetween. A wetting agent layer is provided on at least one of the back surface of the substrate and the active surface of at least one semiconductor die. The wetting agent layer interacts with an adhesive on the adhesive tape when the substrate is heated so that the substrate is adhesively bonded to at least one semiconductor die. The interaction of the wetting agent layer allows the adhesive tape to bond thereto at a lower temperature than that of the conventional bonding methods, and more importantly, enhances adhesion thereto.
Abstract:
A method of forming high definition elements for electrical and electronic devices, substrates, and other components from or including viscous material. The method includes inverting the electrical components after the viscous material is applied and maintaining the inverted orientation until the viscous material dries or cures enough to maintain definition of its perimeter and edge characteristics.
Abstract:
A method and apparatus for achieving a level exposed surface of an adhesive material pool for applying the adhesive material to lead fingers of a lead frame by contacting the lead fingers with the adhesive material pool within an adhesive reservoir. The level adhesive material exposed surface is achieved by attaching a coating stencil having small apertures, such as a screen or a plate with slots, to the adhesive reservoir, such that the only upward outlet for the adhesive material is through the apertures in the coating stencil. The surface tension between walls of the small apertures and the adhesive material flattens out the exposed surface of the adhesive material. This allows a larger area to be printed with a more uniform thickness layer.
Abstract:
A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
Abstract:
The present invention includes electrical interconnections, methods of conducting electricity, and methods of reducing horizontal conductivity within an anisotropic conductive adhesive. In one embodiment, an electrical interconnection configured to electrically couple a first substrate and a second substrate includes: a bond pad of the first substrate having a male configuration; and a bond pad of the second substrate having a female configuration, the bond pad of the second substrate being configured to mate with the bond pad of the first substrate during electrical connection of the bond pads of the first substrate and the second substrate. A method of conducting electricity according to the present invention includes providing first and second bond pads individually defining a planar dimension; coupling the first and second bond pads at an interface having a surface area greater than the area of the planar dimension; and conducting electricity between the first and second bond pads following the coupling.
Abstract:
A method for applying a viscous material to a lead frame element. A method of the invention includes positioning the lead frame facing downward and bringing the lead fingers into contact with a pool of adhesive material. The contact of the lead fingers to the adhesive material results in a portion of the lead fingers receiving a portion of the adhesive material from the pool of adhesive material. The gravitational forces on the adhesive material on the downward facing lead frame maintain the shape and boundary definition of the adhesive material.