摘要:
The invention is directed to a concept to use a 3-dimensional DRAM capacitor as a one-time non-volatile programming element (programmable antifuse) to make redundancy repair and/or to select other options on a DRAM. The programmable element of the present invention provides some significant advantages, such as a lower programming voltage, which allows use of the DRAM's existing operating supply, and requiring only half of the operating voltage to test the element once programming is accomplished. The lower programming voltage allows for redundancy repair of defective DRAM cells (or selecting other options) to be made after the DRAM die is packaged including after it is installed at a customer's site.
摘要:
A process for creating and removing temporary silicon dioxide structures on an in-process integrated circuit with minimal effect on existing permanent silicon dioxide structures that are exposed. The process comprises the steps of blanket depositing an ozone-TEOS silicon dioxide layer through chemical vapor deposition on top of the in-process integrated circuit, thus covering permanent structures formed from conventional silicon dioxides (e.g. TEOS and thermal oxides), etching the ozone-TEOS layer to create said temporary structures, and removing the temporary structures using dilute hydrofluoric acid.
摘要:
A process for creating two thicknesses or gate oxide within a dynamic random memory. The process begins by thermally growing a first layer of gate oxide on a silicon substrate. This first layer is then masked with photoresist in regions where cell access transistors will ultimately be fabricated. All oxide that is not masked is then removed with an oxide etch. After the photoresist is stripped, a second layer of gate oxide is thermally grown on the substrate. The resultant oxided layer, which comprises multiple-thickness components, is used as a pad oxide layer during a conventional LOCOS operation. Peripheral driver transistors are construction on top of a thin layer of gate oxide so as to optimize their performance, whereas, cell access transistors are constructed on top of a thicker layer of gate oxide so as to minimize row line capacitance. A net increase in row line access speed is thus obtained.
摘要:
A process for forming silicon nitride layers on silicon substrates which includes initially heating the silicon substrates in a rapid thermal processor and in a substantially oxygen-free and residual moisture free environment to form a thin Si.sub.3 N.sub.4 layer directly on the silicon surface which is free of any measurable native SiO.sub.2 thereon. Then, the nitridized wafers are transferred into a conventional nitride furnace where the thin Si.sub.3 N.sub.4 layers may be increased in thickness by a desired amount. Typically, the initial or first Si.sub.3 N.sub.4 layer thickness will be about 10-30 angstroms and the second Si.sub.3 N.sub.4 layer will be on the order of 80 angstroms or more to form a composite Si.sub.3 N.sub.4 layer of about 100-150 angstroms in total thickness. This novel process and the high dielectric constant integrated circuit capacitors produced thereby are highly useful in the manufacture of certain very large scale integrated circuit (VLSI) components such as dynamic random access memories and the like.
摘要翻译:一种用于在硅衬底上形成氮化硅层的工艺,其包括在快速热处理器中和基本上无氧且无残留的无水环境中初始加热硅衬底,以直接在硅表面上形成薄的Si 3 N 4层, 可测量的天然SiO2。 然后,将氮化的晶片转移到常规的氮化物炉中,其中薄的Si 3 N 4层可以以期望的量增加。 通常,初始或第一Si 3 N 4层的厚度为约10-30埃,而第二Si 3 N 4层将为约80埃或更多,以形成约100-150埃的总厚度的复合Si 3 N 4层。 由此产生的这种新颖的工艺和高介电常数集成电路电容器在制造诸如动态随机存取存储器等的某些大规模集成电路(VLSI)组件中是非常有用的。
摘要:
A split-polysilicon CMOS DRAM process incorporating self-aligned silicidation of the cell plate, transistor gates and N+ regions with a minimum of additional processing steps. By employing a light oxidation step to protect the P-channel transistor sidewall gates from silicidation during a subsequent processing step, the process avoids the problems that may be created by the double etching of the field oxide and active area regions that has heretofore been required for self-aligned silidation utilizing a split-polysilicon CMOS process. A protective nitride layer is used to prevent oxidation on those regions which are to be silicided. When this improved process is utilized for DRAM fabrication, the protective nitride layer may also be utilized as the cell dielectric. Although this process precludes the silicidation of the sources and drains of P-channel transistors, silicidation of other important regions is accomplished with very few steps required beyond those required for the basic split-polysilicon CMOS process without self-aligned silicidation of conductive regions.
摘要:
Semiconductor structures and methods of making a vertical diode structure are provided. The vertical diode structure may have associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer may be formed over the interior surface of the diode opening and contacting the active region. The diode opening may initially be filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that may be heavily doped with a first type dopant and a bottom portion that may be lightly doped with a second type dopant. The top portion may be bounded by the bottom portion so as not to contact the titanium silicide layer. In one embodiment of the vertical diode structure, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
摘要:
A non-volatile memory element comprising a bottom electrode 12, a top electrode 17 provided on the bottom electrode 12, and a recording layer 18 containing phase change material connected between the bottom electrode 12 and the top electrode 17. In accordance with this invention, the top electrode 17 is in contact with a growth initiation surface 18a of the recording layer 17. This structure can be obtained by forming the top electrode 17 before the recording layer 18, resulting in a three-dimensional structure. This decreases heat dissipation to the bit line without increasing the thickness of the recording layer 18.
摘要:
Briefly, in accordance with an embodiment of the invention, a memory and a method to manufacture the memory is provided. The memory may include a phase change material over a substrate. The memory may further include a switching material coupled to the phase change material, wherein the switching material comprises a chalcogen other than oxygen and wherein the switching material and the phase change material form portions of a vertical structure over the substrate.
摘要:
A memory may be implemented with a stable chalcogenide glass which is defined as a generally amorphous chalcogenide material that does not change to a generally crystalline phase when exposed to 200° C. for 30 minutes or less. Different states may be programmed by changing the threshold voltage of the material. The threshold voltage may be changed with pulses of different amplitude and/or different pulse fall times. Reading may be done using a reference level between the threshold voltages of the two different states. A separate access device is generally not needed.
摘要:
A read bias scheme may be used for phase change memories including a chalcogenide access device and a chalcogenide memory element. Through an appropriate read bias scheme, desirable read margin can be achieved. This may result in better yield, higher reliability, and ultimately lower costs in some cases.