Abstract:
The present invention relates to the intermediate compounds for preparation of agomelatine, as well as the preparation methods thereof. The intermediate of the present invention for preparation of agomelatine is compound A as shown in the following formula. Also provided are two novel intermediate compounds. When we use these new intermediate compounds to prepare agomelatine, it is simple to manipulate, well-controlled and with high purity, without complicated operations such as rectification and column chromatography separation, and suitable for industrial production. Meanwhile, the preparation methods of the two new intermediates themselves is simple and high yield, only using the most commonly-used 7-methoxy-tetralone as original starting material and undergoing one step of reaction to obtain the intermediates, followed by one more step of converting the intermediate compounds to desired product agomelatine. Said reaction processes are greatly simplified, with the reaction yield being improved and the difficulty in purification of previous method being overcome, as compare with the previous technique for preparation of agomelatine. Typically, the yield of the present invention is over 70%.
Abstract:
Chain or logic diagnosis resolution can be enhanced in the presence of limited failure cycles using embodiments of the various methods, systems, and apparatus described herein. For example, pattern sets can be ordered according to a diagnosis coverage figure, which can be used to measure chain or logic diagnosability of the pattern set. Per-pin based diagnosis techniques can also be used to analyze limited failure data.
Abstract:
The invention provides the use of ursolic acid saponin and oleanolic acid saponin of formula (I) in preparing medicaments for increasing leucocytes and/or platelets. The invention also provides a pharmaceutical composition containing the same compound. The invention utilizes the cheap and accessible ursolic acid and oleanolic acid which are widely present in natural plants as raw materials, introduces monosaccharyls or oligosaccharyls by structural modification. It is proved by pharmacological tests that the compound of formula (I) have an activity of obviously increasing leucocytes and/or platelets.
Abstract:
An apparatus for fabricating IB-IIIA-VIA2 compound semiconductor thin films is provided, including a reaction chamber, a pressure control unit connected with the reaction chamber, a pedestal disposed in the reaction chamber wherein the at least one substrate includes elements of group IB and group IIIA, a first group VIA element supply unit connecting with the reaction chamber for providing vaporized first group VIA elements into the reaction chamber, and a plasma unit disposed in the reaction chamber. In one embodiment, during a reaction in the reaction chamber, the vaporized first group VIA elements flow through the high density plasma region and transform into ionized first group VIA elements, and the ionized first group VIA elements diffuse into the at least one substrate comprising elements of group IB and group IIIA to form a IB-IIIA-VIA2 compound semiconductor thin film thereover.
Abstract:
Methods, apparatus, and systems for performing fault diagnosis are disclosed herein. In certain disclosed embodiments, methods for diagnosing faults from compressed test responses are provided. For example, in one exemplary embodiment, a circuit description of an at least partially scan-based circuit-under-test and a compactor for compacting test responses captured in the circuit-under-test is received. A transformation function performed by the compactor to the test responses captured in the circuit-under-test is determined. A diagnostic procedure for evaluating uncompressed test responses is modified into a modified diagnostic procedure that incorporates the transformation function therein. Computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods are also provided. Likewise, computer-readable media comprising lists of fault candidates identified by any of the disclosed methods or circuit descriptions created or modified by the disclosed methods are provided.
Abstract:
Disclosed herein are processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
Abstract:
A video summary method comprises dividing a video into a plurality of video shots, analyzing each frame in a video shot from the plurality of video shots, determining a saliency of each frame of the video shot, determining a key frame of the video shot based on the saliency of each frame of the video shot, extracting visual features from the key frame and performing shot clustering of the plurality of video shots to determine concept patterns based on the visual features. The method further comprises fusing different concept patterns using a saliency tuning method and generating a summary of the video based upon a global optimization method.
Abstract:
Methods and systems for transcoding in a cloud computing platform are disclosed. According to an embodiment, a receiver receives an uploading file by one data block at a time, and stores the received data blocks in various storage modules. Small segment files are then generated when the size of the received data blocks is larger than a threshold. A transcoder transcodes the small segment files from one format such as a bit rate or a frame size to another while the receiver is still receiving a new data block. The transcoded small segment files may be stitched together to form a stitched file, which may be stored in a storage module to be downloaded through a content distribution network (CDN). The transcoded small segment files may be passed to streaming servers for streaming over a network while the receiver is still receiving a new data block of the uploading file.
Abstract:
A method for selectively aligning and positioning semiconductor nanowires on a substrate by providing a substrate; patterning electrodes on a surface of the substrate; conditioning the surface of the substrate to attach semiconductor nanowires to the surface by functionalizing the surface with a first functional group having an affinity for the semiconductor nanowires; providing an environment in contact with the electrodes, the environment having suspended therein the semiconductor nanowires; and providing an electric field between the electrodes, thereby causing the nanowires in the environment to align between and electrically connect the electrodes to thereby form a semiconducting channel between the electrodes.
Abstract:
The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.