Abstract:
An optical device of the present invention includes an input aperture array formed with a plurality of input apertures at a preselected period of arrangement. An output aperture array is formed with a plurality of output apertures respectively facing the input apertures at a preselected period of arrangement. An aperture array intervenes between the input aperture array and the output aperture array and is formed with apertures respectively facing the input apertures and output apertures at a preselected period of arrangement. The aperture array satisfies the following two conditions:t2>T.multidot.(r+R)/(P+r-.rho.)t1
Abstract:
An optical scanning station is disclosed which utilizes light bending apparatus such as mirrors or optical wedges to gather and redirect some of the illumination radiating from the object. The gathering of the light occurs off-axis from the lens and the redirection of the light to the lens causes an off-axis angle between the light beam and the lens axis, thereby resulting in multiple images which are spaced apart from each other when focused on an image plane. The multiple images may be split apart and directed to separate image planes by use of front surface mirrors making the images then available for individual capture by charge couple devices or other similar image capture apparatus. Alternatively, the outboard images may be redirected, again by mirrors, to be focused coincident to the on-axis image, thereby increasing the illumination level at the image plane well in excess of that obtainable with only a single image of the object being focused at the image plane. The primary advantage of these devices is either to permit separate images to be presented on separate image planes without the subtractive losses occasioned by use of subtractive beam splitters or to combine the multiple images to raise the illumination level of a single image at the image plane, thereby permitting the use of slower lenses or reduced illumination level at the object.
Abstract:
An optical reading apparatus for a facsimile device in which a reading unit has a shading plate. The shading plate is arranged such that it can move in a direction inclined at angle .theta. (.theta.
Abstract:
An image reading device, such as may be employed in a facsmile transmitter, laser beam printer, copying machine, or the like, in which assembly and alignment of optical components of the system is simplified and stray light is prevented from reaching a photoelectric conversion element. The optical system and the photoelectric conversion element are fixedly secured to a single supporting frame in a desired predetermined positional relationship. The supporting frame is detachably mounted on a mounting surface of an image reading device body. The optical system includes a filter or dust-proof transparent cover, an optical path changing mirror, and an image forming lens, all of which are secured to the supporting frame. A light-quantity-distribution correcting light-shielding plate may be provided in front of the image forming lens to provide an even distribution of image light on the photoelectric conversion element.
Abstract:
A reading apparatus that reads a sheet includes: a first light emitting diode (LED) configured to emit light with a specific wavelength; a light emitting element including a second LED configured to emit light with the specific wavelength and a phosphor configured to be excited by the light emitted from the second LED; a line sensor configured to generate a reference signal according to a quantity of received light emitted from the first LED and reflected off the sheet, and also generate an image signal according to a quantity of received light emitted from the light emitting element and reflected off the sheet; and a controller configured to generate an image representing the sheet from a differential result obtained by removing a component corresponding to the reference signal from the image signal.
Abstract:
Provided is an image reading device including: a light source member including light source portions emitting light; a light guide member including: an input section to which the light emitted from the light source portions is input; and an output section from which the input light is output; a support member supporting the light source member and the light guide member and having higher rigidity than the light source member and the light guide member; a retaining member configured to press the light guide member toward the support member and configured to retain the light guide member in a supported state by the support member; and a protrusion-shaped contact section provided on the light guide member and contacting the retaining member, the contact section protruding in a direction perpendicular from the predetermined main scanning direction from the light guide member toward the retaining member.
Abstract:
Two aperture members are disposed on each side of a lens array. In one aperture member, decreasingly tapered through holes having a cross sectional area that gradually decreases in a light incident direction and increasingly tapered through holes having a cross sectional area that gradually increases in the light incident direction are alternatively arranged. The other aperture member that is oppositely disposed with respect to the lens array has the same configuration. The center axes of the decreasingly tapered through holes and the center axes of the increasingly tapered through holes are coincident with each other. This enables to achieve an image forming optical element that has a large amount of light and less irregularity of the amount of light.
Abstract:
An image reading optical system, including: an imaging optical system used for imaging a slit area of a document and includes an optical element having different cross section shapes in a main scanning direction and in a sub-scanning direction; an aperture stop; and an optical phase changing filter disposed adjacent to the aperture stop and including a phase lead area and a phase delay area, in which the optical phase changing filter includes a surface shape component that is symmetric only with respect to a predetermined plane including a surface normal at the center of the incident beam and one of the main scanning direction and the sub-scanning direction, and with respect to a surface that includes the surface normal at the center of the incident beam and is perpendicular to the predetermined plane, one side is the phase lead area, and another side is the phase delay area.
Abstract:
Fast channel changing in digital-television-based entertainment networks can be implemented, for example, by electing to tune to channels at opportune tuning times. In an exemplary implementation, a method includes: receiving a channel change request that indicates a requested new channel from a client device; preparing a broadcast video data stream of the requested new channel that is offset in time behind a current broadcast time for broadcast video data of the requested new channel; and streaming the broadcast video data stream responsive to the channel change request. In another exemplary implementation, a system includes: a storage device that retains broadcast video data for multiple channels; a video data extractor that accesses the retained broadcast video data and retrieves an intra frame of broadcast video data that is in the past for a requested channel; and a video data distributor that transmits the retrieved intra frame of broadcast video data.
Abstract:
The invention relates to a scanner's optical device, receive the light coming from the image of an object to be scanned, comprising: several reflective mirrors, a light-focusing module, and a charge coupled device. The reflective mirrors provide reflection and directional change for the light and, by appropriately arranging several reflective mirrors, the light of the object to be scanned directionally changed to a predetermined route. With at least one curving mirror, the light-focusing module focus the light of the predetermined route and then directionally change it, and a raster is then provided in the light route of the curving mirror for filtering out unnecessary light. The charge coupled device may receive the light coming from the light-focusing module and convert it into electronic signals. The said light-focusing module replaces the prior lens set for executing a scanning job.