Abstract:
Detected events such as impacts, accidents, breakdowns, and types of driving behaviors based on feedback from tilt, gravity, accelerometers and/or shock sensors within a portable electrical power storage device such as a battery and/or within a vehicle (e.g., an electric scooter) are communicated to the user's mobile device, dashboard display and/or backend systems over wired and/or wireless communication channels. The communication of the events and types of events are logged and automatically aggregated from multiple vehicles for further analysis to determine various potential system-wide safety issues and to track event history on an individual per-user or individual per-scooter basis or individual per-battery basis. Such event data may also be transferred accordingly via the battery exchange process at the online exchange machine through a memory device attached to the battery that stores the event data.
Abstract:
Multidirectional electrical connectors, electrical connector plugs and electrical connection systems for electrically connecting a portable energy storage device to an electrically powered device, such as an electric powered vehicle or a device for electrically charging the portable electrical energy storage device are described. The multidirectional feature of the electrical connectors, electrical connector plugs and electrical connections systems permit electrical connection between the electrical connectors and electrical connector plugs in a plurality of rotational orientations between a portable electrical energy storage device to which a connector or plug is electrically connected and an electrically powered device to which a corresponding plug or connecter is electrically connected.
Abstract:
A network of collection, charging and distribution machines collects, charges and distributes portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Vehicle diagnostic data of a vehicle using the portable electrical energy storage device is stored on a diagnostic data storage system of the portable electrical energy storage device during use of a respective portable electrical energy storage device by a respective vehicle. Once the user places the portable electrical energy storage device in the collection, charging and distribution machine, or comes within wireless communications range of a collection, charging and distribution machine, a connection is established between the collection, charging and distribution machine and the portable electrical energy storage device. The collection, charging and distribution machine then reads vehicle diagnostic data stored on the diagnostic data storage system of the portable electrical energy storage device and provides information regarding the diagnostic data.
Abstract:
A collapsible step bar comprising a step bar body, a bracket, a first link, a second link and a pin is provided. The step bar body comprises a first axis and a second axis in a front end. The bracket is disposed adjacent the step bar body. The first link comprises a first end and a second end, and the second link comprises a first end and a second end respectively. Both the first ends of the first link and the second link are pivotably disposed on the bracket, and both the second ends of the first link and the second link are pivotably disposed on the first axis and the second axis of the step bar body respectively. The pin is disposed on a hinge joint between the bracket and the first link for control of a rotation of the first link, which makes the step bar body in a closed state or an open state.
Abstract:
A network of collection, charging and distribution machines collects, charges and distributes portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Vehicle diagnostic data of a vehicle using the portable electrical energy storage device is stored on a diagnostic data storage system of the portable electrical energy storage device during use of a respective portable electrical energy storage device by a respective vehicle. Once the user places the portable electrical energy storage device in the collection, charging and distribution machine, or comes within wireless communications range of a collection, charging and distribution machine, a connection is established between the collection, charging and distribution machine and the portable electrical energy storage device. The collection, charging and distribution machine then reads vehicle diagnostic data stored on the diagnostic data storage system of the portable electrical energy storage device and provides information regarding the diagnostic data.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Availability of charged portable electrical energy storage devices available at a collection, charging and distribution machine are communicated to or acquired by a mobile device of a user or a user's vehicle. Once the mobile device of a user or a user's vehicle comes within close proximity of the collection, charging and distribution machine or within a particular area surrounding the collection, charging and distribution machine, the collection, charging and distribution machine or a collection, charging and distribution machine management system communicates an alert (e.g., over a cellular network, short range wireless signal or wireless fidelity (Wi-Fi) network) to the mobile device or vehicle indicating how many portable electrical energy storage devices are available at the distribution machine.
Abstract:
Systems and methods are provided for detecting that an electric motor drive vehicle (e.g., an electric scooter or motorbike) is idling based on one or more of sensed parameters indicative of the idling state. These sensed parameters may include one or more of, alone or in any combination, a sensed throttle position, at least one sensed electrical characteristic of a traction electric motor, a power converter, or an electrical storage device of the vehicle, and a sensed rate of rotation of a drive shaft of the traction electric motor or of a wheel drivably coupled to the traction electric motor. Upon detecting that the vehicle is in an idling state, a controller of the vehicle enters into a standby mode. In the standby mode, a relatively small amount of electrical power is supplied to the traction electric motor to cause a vibration of the motor to alert a driver that the vehicle is ON in the standby mode and is ready to be driven. Additionally, an audible and/or visual indication may be issued in the standby mode to further alert the driver that the vehicle is ON and ready to be driven.