Abstract:
A method including providing a semiconductor structure having a dielectric stack, hardmask stack, and mandrel layer disposed thereon. An array of mandrels is patterned into the mandrel layer. Mandrel spacers are formed self-aligned on sidewalls of the mandrels. A gapfill layer is disposed and planarized over the semiconductor structure. Non-mandrel pillars are formed over the planarized gapfill layer. Exposed portions of the gapfill layer are etched to form non-mandrel plugs preserved by the pillars. The pillars are removed to form a pattern, the pattern including the non-mandrel plugs. The pattern is utilized to form an array of alternating mandrel and non-mandrel metal interconnection lines in the dielectric stack. The array includes non-mandrel dielectric structures formed from the non-mandrel plugs.
Abstract:
At least one method, apparatus and system disclosed herein for forming a finFET device having a pass-through structure. A first gate structure and a second gate structure are formed on a semiconductor wafer. A first active area is formed on one end of the first and second gate structures. A second active area is formed on the other end of the first and second gate structures. A trench silicide (TS) structure self-aligned to the first and second gate structures is formed. The TS structure is configured to operatively couple the first active area to the second active area.
Abstract:
One aspect of the disclosure relates to an integrated circuit structure. The integrated circuit structure may include: a contact line being disposed within a dielectric layer and providing electrical connection to source/drain epitaxial regions surrounding a set of fins, the contact line including: a first portion of the contact line electrically isolated from a second portion of the contact line by a contact line spacer, wherein the first portion and the second portion each include a liner layer and a metal, the liner layer separating the metal from the dielectric layer and the source/drain epitaxial regions, and wherein the metal is directly in contact with the contact line spacer.
Abstract:
A hard mask is formed into lines and bridges two adjacent lines using mandrels, spacers for the mandrels and a lithographic process for each bridge to create a metal line pattern in a layer of an interconnect structure with a line pitch below lithographic resolution.
Abstract:
Embodiments of the present invention provide an improved semiconductor structure and methods of fabrication that provide transistor contacts that are self-aligned in two dimensions. Two different capping layers are used, each being comprised of a different material. The two capping layers are selectively etchable to each other. One capping layer is used for gate coverage while the other capping layer is used for source/drain coverage. Selective etch processes open the desired gates and source/drains, while block masks are used to cover elements that are not part of the connection scheme. A metallization line (layer) is deposited, making contact with the open elements to provide electrical connectivity between them.
Abstract:
A method of forming a silicide layer as a pass-through contact under a gate contact between p-epilayer and n-epilayer source/drains and the resulting device are provided. Embodiments include depositing a semiconductor layer over a substrate; forming a pFET gate on a p-side of the semiconductor layer and a nFET gate on a n-side of the semiconductor layer; forming a gate contact between the pFET gate and the nFET gate; forming raised source/drains on opposite sides of each of the pFET and nFET gates; and forming a metal silicide over a first raised source/drain on the p-side and over a second raised source/drain on the n-side, wherein the metal silicide extends from the first raised source/drain to the second raised source/drain and below the gate contact between the pFET and nFET gates.
Abstract:
A device includes a first dielectric layer having at least one conductive feature embedded therein. A first plurality of conductive lines are embedded in a second dielectric layer disposed above the first dielectric layer. A first conductive line in the first plurality of conductive lines contacts the conductive feature and includes a conductive via portion and a recessed line portion. A second plurality of conductive lines are embedded in a third dielectric layer disposed above the second dielectric layer. A second conductive line in the second plurality of conductive lines contacts the conductive via portion and the conductive via portion has a first cross-sectional dimension corresponding to a width of the first conductive line and a second cross-sectional dimension corresponding to a width of the second conductive line.
Abstract:
A method includes forming a first dielectric layer having at least one conductive feature embedded therein. A first plurality of conductive lines embedded in a second dielectric layer disposed above the first dielectric layer is formed. A first conductive line in the plurality of conductive lines contacts the conductive feature. The first conductive line is etched using a first etch mask to define a conductive via portion and a recessed line portion in the first conductive line. A second plurality of conductive lines embedded in a third dielectric layer disposed above the second dielectric layer is formed. A second conductive line in the second plurality of conductive lines contacts the conductive via portion and the third dielectric layer directly contacts the second dielectric layer.
Abstract:
A method of forming a nanowire device includes patterning a plurality of semiconductor material layers such that each layer has first and second exposed end surfaces. The method further includes forming doped extension regions in the first and second exposed end surfaces of the semiconductor material layers. The method further includes, after forming the doped extension regions, forming epi semiconductor material in source and drain regions of the device.
Abstract:
Embodiments of the present invention provide an improved contact and method of fabrication. A dielectric layer is formed over transistor structures which include gates and source/drain regions. A first etch, which may be a reactive ion etch, is used to partially recess the dielectric layer. A second etch is then used to continue the etch of the dielectric layer to form a cavity adjacent to the gate spacers. The second etch is highly selective to the spacer material, which prevents damage to the spacers during the exposure (opening) of the source/drain regions.