Abstract:
To reduce the number of terminals that protrude from a printed board and to lower a cost in production of the base. A printed board including an electrical junction unit provided with a set of terminals soldered on printed boards. The set of terminals comprise first type terminals each having a small sectional area and second type terminals each having a sectional area greater than that of each of the first type terminals. The electrical junction unit is any one of only the first type terminals, only the second type terminals, and a combination of the first and second type terminals. The first type terminals are inserted into and protrude from through-holes in a base and are soldered on the printed boards. The second type terminals are soldered on the printed boards without using the base.
Abstract:
A display device includes a display panel, a printed circuit board, a plurality of semiconductor devices which are film-like substrates with an IC chip, and a monolithic anisotropic conductive film disposed on the printed circuit board. Each of the semiconductor devices has a first side portion and a second side portion opposite to the first side portion. The first side portion is connected to the printed circuit board via the monolithic anisotropic conductive film, and the second side portion is connected to the display panel. Further the first side portion of each of the semiconductor devices is respectively connected at separated portions of the monolithic anisotropic conductive film.
Abstract:
A circuit board may include hybrid via structures configured to connect to components, such as connectors and electronic components, mounted on the circuit board. A hybrid via structure may include one or more micro-vias configured to provide an electrical connection to a signal trace in the circuit board and one or more through-vias configured to provide a ground connection to at least one reference plane in the circuit board. In one embodiment, a plurality of circuit boards including the hybrid via structures and signal traces may be connected to establish a channel supporting differential signaling and data transfer rates of at least about 5 Gb/s. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
An inductor includes a core formed of a magnetic material and a foil winding wound at least partially around or through at least a portion of the core. A first end of the winding extends away from the core to form an extended output tongue configured and arranged to supplement or serve as a substitute for a printed circuit board foil trace. A second end of the winding forms a solder tab. At least a portion of the extended output tongue and the solder tab are formed at a same height relative to a bottom surface of the core. Another inductor includes a core formed of a magnetic material, a winding wound at least partially around or through at least a portion of the core, and a ground return conductor attached to the core. The core does not form a magnetic path loop around the ground return conductor.
Abstract:
A high power light emitting diode, The high power light emitting diode comprises a light emitting diode chip, a main module, two first electrode pins, two second electrode pins, and at least one heat dissipation board. The main module has a concave and the light emitting diode chip is positioned in the concave. The first electrode pins are connected to a first side of the main module and also electrically connected to the light emitting diode chip. The second electrode pins are arranged on a second side of the main module that is relative to the first electrode pins wherein the second electrode pins and the first electrode pins are electrically opposite. The second electrode pins are electrically connected to the light emitting diode chip. The heat dissipation board is connected to a part of the main module between the first electrode pin and the second electrode pin.
Abstract:
To reduce the number of terminals that protrude from a printed board and to lower a cost in production of the base. A printed board including an electrical junction unit provided with a set of terminals soldered on printed boards. The set of terminals comprise first type terminals each having a small sectional area and second type terminals each having a sectional area greater than that of each of the first type terminals. The electrical junction unit is any one of only the first type terminals, only the second type terminals, and a combination of the first and second type terminals. The first type terminals are inserted into and protrude from through-holes in a base and are soldered on the printed boards. The second type terminals are soldered on the printed boards without using the base.
Abstract:
A printed circuit board including: a semiconductor package; a board; first to fourth electrodes on a second face of the semiconductor package; fifth to eighth electrodes on a mount region of the board; a first conductor connecting the first electrode with the second electrode; a second conductor connecting the third electrode with the fourth electrode; a third conductor connecting the sixth electrode with the seventh electrode; fourth conductors respectively connecting to the fifth electrode and the eighth electrode; conductive bonding portions bonding each of the electrodes on the second face with corresponding one of the electrodes on the mount region; and a determination circuit connected to the fourth conductors and configured to determine a difference between a value of current supplied to one of the fourth conductors and a value of current received through the other fourth conductor.
Abstract:
The present invention relates to a dashboard indicator module comprising, in a casing, a rotary motor, an output shaft, mechanical reduction means associated with the motor, at least one electrical supply coil, electrical connection tabs linked to the coils leaving said casing and electrical contact elements, characterised in that said electrical contact elements can be fitted on the connection tabs in order to produce solderless connectors on the printed circuit or even removed from the connection tabs in order to allow the connection tabs of the motor to be soldered directly to the printed circuit.
Abstract:
An electromagnetic relay including a body, a plurality of first surface-mount terminals projecting from the body, and at least one second terminal projecting from the body. Each first terminal includes a distal end portion adapted to be mounted on a surface of a circuit board. The second terminal includes a distal end portion adapted to be inserted into a through-hole of a circuit board. The distal end portion of the second terminal is positioned farther away from the body than the distal end portion of the first terminal.
Abstract:
A SMT/DIP type connector structure having at least three rows of terminals is provided. The connector structure mainly includes a printed circuit board and a connector having at least a first row of terminals, a second row of terminals and a third row of terminals. The printed circuit board is disposed centrally with respect to the connector. The first row and second row of terminals are respectively mounted to top and bottom board sides of the printed circuit board by using SMT. The third row and further rows of terminals can be mounted to the top or bottom board side of the printed circuit board selectively by using SMT or DIP. This structure can increase the speed of mounting the connector to the printed circuit board and significantly reduce the overall height of the resulted product.