摘要:
CMP selectivity, removal rate, and uniformity are controlled both locally and globally by altering electric charge at the wafer surface. Surface charge characterization is performed by an on-board metrology module. Based on a charge profile map, the wafer can be treated in an immersion bath to impart a more positive or negative charge overall, or to neutralize the entire wafer before the CMP operation is performed. If charge hot spots are detected on the wafer, a charge pencil can be used to neutralize localized areas. One type of charge pencil bears a tapered porous polymer tip that is placed in close proximity to the wafer surface. Films present on the wafer absorb ions from, or surrender ions to, the charge pencil tip, by electrostatic forces. The charge pencil can be incorporated into a CMP system to provide an in-situ treatment prior to the planarization step or the slurry removal step.
摘要:
A vertical tunneling FET (TFET) provides low-power, high-speed switching performance for transistors having critical dimensions below 7 nm. The vertical TFET uses a gate-all-around (GAA) device architecture having a cylindrical structure that extends above the surface of a doped well formed in a silicon substrate. The cylindrical structure includes a lower drain region, a channel, and an upper source region, which are grown epitaxially from the doped well. The channel is made of intrinsic silicon, while the source and drain regions are doped in-situ. An annular gate surrounds the channel, capacitively controlling current flow through the channel from all sides. The source is electrically accessible via a front side contact, while the drain is accessed via a backside contact that provides low contact resistance and also serves as a heat sink. Reliability of vertical TFET integrated circuits is enhanced by coupling the vertical TFETs to electrostatic discharge (ESD) diodes.
摘要:
Metal quantum dots are incorporated into doped source and drain regions of a MOSFET array to assist in controlling transistor performance by altering the energy gap of the semiconductor crystal. In a first example, the quantum dots are incorporated into ion-doped source and drain regions. In a second example, the quantum dots are incorporated into epitaxially doped source and drain regions.
摘要:
Various embodiments facilitate die protection for an integrated circuit. In one embodiment, a multilayer structure is formed in multiple levels and along the edges of a die to prevent and detect damages to the die. The multilayer structure includes a support layer, a first plurality of dielectric pillars overlying the support layer, a metal layer that fills spaces between the first plurality of dielectric pillars, an insulation layer overlying the first plurality of dielectric pillars and the metal layer, a second plurality of dielectric pillars overlying the insulation layer, and a second metal layer that fills spaces between the second plurality of dielectric pillars.
摘要:
Single gate and dual gate FinFET devices suitable for use in an SRAM memory array have respective fins, source regions, and drain regions that are formed from portions of a single, contiguous layer on the semiconductor substrate, so that STI is unnecessary. Pairs of FinFETs can be configured as dependent-gate devices wherein adjacent channels are controlled by a common gate, or as independent-gate devices wherein one channel is controlled by two gates. Metal interconnects coupling a plurality of the FinFET devices are made of a same material as the gate electrodes. Such structural and material commonalities help to reduce costs of manufacturing high-density memory arrays.
摘要:
A wavy line interconnect structure that accommodates small metal lines and enlarged diameter vias is disclosed. The enlarged diameter vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. The enlarged diameter vias make direct contact with at least three sides of the underlying metal lines, and can be aligned asymmetrically with respect to the metal line to increase the packing density of the metal pattern. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. An interconnect structure having enlarged diameter vias can also feature air gaps to reduce the chance of dielectric breakdown. By allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
摘要:
Integrated circuit devices and fabrication techniques. A semiconductor device fabrication method may include doping, in a same processing step, first and second portions of a substrate of an integrated circuit. The first portion corresponds to a doped region of a semiconductor device. The second portion corresponds to a via contact. The method may further include, after the doping, forming the gate of the semiconductor device.
摘要:
An adaptive uniform polishing system is equipped with feedback control to apply localized adjustments during a polishing operation. The adaptive uniform polishing system disclosed has particular application to the semiconductor industry. Such an adaptive uniform polishing system includes a rotatable head that holds a semiconductor wafer, and a processing unit structured to be placed in contact with an exposed surface of the wafer. The processing unit includes a rotatable macro-pad and a plurality of rotatable micro-pads that can polish different portions of the exposed surface at different rotation speeds and pressures. Thus, uniformity across the exposed surface can be enhanced by applying customized treatments to different areas. Customized treatments can include the use of different pad materials and geometries. Parameters of the adaptive uniform polishing system are programmable, based on in-situ data or data from other operations in a fabrication process, using advanced process control.
摘要:
It is recognized that, because of its unique properties, graphene can serve as an interface with biological cells that communicate by an electrical impulse, or action potential. Responding to a sensed signal can be accomplished by coupling a graphene sensor to a low power digital electronic switch that is activatable by the sensed low power electrical signals. It is further recognized that low power devices such as tunneling diodes and TFETs are suitable for use in such biological applications in conjunction with graphene sensors. While tunneling diodes can be used in diagnostic applications, TFETs, which are three-terminal devices, further permit controlling the voltage on one cell according to signals received by other cells. Thus, by the use of a biological sensor system that includes graphene nanowire sensors coupled to a TFET, charge can be redistributed among different biological cells, potentially with therapeutic effects.
摘要:
Methods and devices for enhancing mobility of charge carriers. An integrated circuit may include semiconductor devices of two types. The first type of device may include a metallic gate and a channel strained in a first manner. The second type of device may include a metallic gate and a channel strained in a second manner. The gates may include, collectively, three or fewer metallic materials. The gates may share a same metallic material. A method of forming the semiconductor devices on an integrated circuit may include depositing first and second metallic layers in first and second regions of the integrated circuit corresponding to the first and second gates, respectively.