Method for producing a micromechanical structure and a micromechanical structure
    133.
    发明申请
    Method for producing a micromechanical structure and a micromechanical structure 失效
    微机械结构和微机械结构的制造方法

    公开(公告)号:US20020055253A1

    公开(公告)日:2002-05-09

    申请号:US09992939

    申请日:2001-11-05

    Inventor: Joachim Rudhard

    CPC classification number: B81B3/0008 B81B3/0086 B81B2201/0235 B81C2201/112

    Abstract: A method for producing a micromechanical structure, and a micromechanical structure having a movable structure and a stationary structure made of silicon. In the method for producing the micromechanical structure, in one process step, a superficial metal-silicide layer is produced in the movable structure and/or the stationary structure.

    Abstract translation: 微机电结构的制造方法以及具有可移动结构和由硅制成的静止结构的微机械结构。 在制造微机械结构的方法中,在一个工艺步骤中,在可移动结构和/或固定结构中产生表面金属硅化物层。

    Tungsten coating for improved wear resistance and reliability of microelectromechanical devices
    134.
    发明授权
    Tungsten coating for improved wear resistance and reliability of microelectromechanical devices 有权
    钨涂层,用于改善微机电装置的耐磨性和可靠性

    公开(公告)号:US06290859B1

    公开(公告)日:2001-09-18

    申请号:US09439103

    申请日:1999-11-12

    Abstract: A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 ° C. in the presence of gaseous nitrogen trifluoride (NF3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF6) at an elevated temperature, preferably about 450° C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.

    Abstract translation: 公开了一种方法,其中可以在微机电(MEM)装置内的暴露的半导体表面(例如硅,锗或碳化硅)上形成5-50纳米厚的共形钨涂层,以改善耐磨性和可靠性。 在清洁半导体表面之后形成钨涂层,以从表面除去任何有机材料和氧化物膜。 通过在含有气态三氟化氮(NF 3)的存在下,将含有MEM装置的基板加热至200-600℃的温度,进行最终的原位清洗步骤。 钨涂层然后可以通过半导体表面和六氟化钨(WF6)之间的化学反应在升高的温度,优选约450℃下形成。钨沉积工艺是自限制的,并且覆盖所有暴露的半导体表面,包括紧密的表面 联系。 本发明可以应用于许多不同类型的MEM装置,包括微型雷达,微镜和微型引擎。 此外,本发明的钨耐磨涂层可用于提高MEM装置内的一个或多个半导体表面的硬度,耐磨性,导电性,光反射率和化学惰性。

    Method of cleaning and treating a semiconductor device including a
micromechanical device
    136.
    发明授权
    Method of cleaning and treating a semiconductor device including a micromechanical device 失效
    清洁和处理包括微机械装置的半导体器件的方法

    公开(公告)号:US6024801A

    公开(公告)日:2000-02-15

    申请号:US761579

    申请日:1996-12-09

    Abstract: A method of cleaning and treating a device, including those of the micromechanical (10) and semiconductor type. The surface of a device, such as the landing electrode (22) of a digital micromirror device (10), is first cleaned with a supercritical fluid (SCF) in a chamber (50) to remove soluble chemical compounds, and then maintained in the SCF chamber until and during the subsequent passivation step. Passivants including PFDA and PFPE are suitable for the present invention. By maintaining the device in the SCF chamber, and without exposing the device to, for instance, the ambient of a clean room, organic and inorganic contaminants cannot be deposited upon the cleaned surface prior to the passivation step. The present invention derives technical advantages by providing an improved passivated surface that is suited to extend the useful operation life of devices, including those of the micromechanical type, reducing stiction forces between contacting elements such as a mirror and its landing electrode. The present invention is also suitable for cleaning and passivating other surfaces including a surface of semiconductor wafers, and the surface of a hard disk memory drive.

    Abstract translation: 一种清洁和处理包括微机械(10)和半导体类型的装置的方法。 首先在室(50)中用超临界流体(SCF)清洁诸如数字微镜装置(10)的着陆电极(22)的装置的表面以除去可溶性化合物,然后保持在 SCF室直到和之后的钝化步骤。 包括PFDA和PFPE的钝化剂适用于本发明。 通过将装置保持在SCF室中,并且在不将装置暴露于例如洁净室的环境的情况下,在钝化步骤之前,有机和无机污染物不能沉积在清洁的表面上。 本发明通过提供一种改进的钝化表面来提供技术优点,所述钝化表面适于延长包括微机械型的装置的有用使用寿命,从而降低诸如反射镜和其着陆电极的接触元件之间的静摩擦力。 本发明也适用于清洁和钝化包括半导体晶片的表面的其它表面以及硬盘存储器驱动器的表面。

Patent Agency Ranking