Abstract:
A semiconductor dynamic quantity sensor includes a semiconductor support substrate having a specific resistance equal to or less than 3&OHgr; cm. An insulation film is provided on the support substrate and a semiconductor layer is provided on the support substrate with the insulation film interposed therebetween. The semiconductor layer has a specific resistance equal to or less than 3&OHgr; cm. A movable electrode is provided in the semiconductor layer to be displaced according to a dynamic quantity acting thereto. A fixed electrode is fixedly provided in the semiconductor layer to make a specific gap with the movable electrode and to from a capacitor with the movable electrode. The capacitor has a capacity that changes in response to displacement of the movable electrode to detect the dynamic quantity.
Abstract:
A method for fabricating an adhesion-resistant microelectromechanical device is disclosed wherein amorphous hydrogenated carbon is used as a coating or structural material to prevent adhesive failures during the formation and operation of a microelectromechanical device.
Abstract:
A method for producing a micromechanical structure, and a micromechanical structure having a movable structure and a stationary structure made of silicon. In the method for producing the micromechanical structure, in one process step, a superficial metal-silicide layer is produced in the movable structure and/or the stationary structure.
Abstract:
A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 ° C. in the presence of gaseous nitrogen trifluoride (NF3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF6) at an elevated temperature, preferably about 450° C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.
Abstract:
In a method for manufacturing a semiconductor acceleration sensor, a movable portion including a mass portion and movable electrodes is formed in a single crystal silicon thin film provided on a silicon wafer through an insulation film by etching both the single crystal silicon thin film and the silicon wafer. In this case, the movable portion is finally defined at a movable portion defining step that is carried out in a vapor phase atmosphere. Accordingly, the movable portion is prevented from sticking to other regions due to etchant during the manufacture thereof.
Abstract:
A method of cleaning and treating a device, including those of the micromechanical (10) and semiconductor type. The surface of a device, such as the landing electrode (22) of a digital micromirror device (10), is first cleaned with a supercritical fluid (SCF) in a chamber (50) to remove soluble chemical compounds, and then maintained in the SCF chamber until and during the subsequent passivation step. Passivants including PFDA and PFPE are suitable for the present invention. By maintaining the device in the SCF chamber, and without exposing the device to, for instance, the ambient of a clean room, organic and inorganic contaminants cannot be deposited upon the cleaned surface prior to the passivation step. The present invention derives technical advantages by providing an improved passivated surface that is suited to extend the useful operation life of devices, including those of the micromechanical type, reducing stiction forces between contacting elements such as a mirror and its landing electrode. The present invention is also suitable for cleaning and passivating other surfaces including a surface of semiconductor wafers, and the surface of a hard disk memory drive.
Abstract:
An encapsulated MEMS device and a method for manufacturing the MEMS device are provided. The method comprises providing a cavity structure having an inner volume comprising a plurality of MEMS elements, which are relatively displaceable with respect to each other, and having an opening structure to the inner volume, depositing a Self-Assembled Monolayer (SAM) through the opening structure onto exposed surfaces within the inner volume of the cavity structure, and closing the cavity structure by applying a layer structure on the opening structure for providing a hermetically closed cavity.
Abstract:
A microelectromechanical system device includes a substrate, a dielectric layer, an electrode, a surface modification layer and a membrane. The dielectric layer is formed on the substrate, and is formed with a cavity that is defined by a cavity-defining wall. The electrode is formed in the dielectric layer. The surface modification layer covers the cavity-defining wall, and has a plurality of hydrophobic end groups. The membrane is connected to the dielectric layer, and seals the cavity. The membrane is movable toward or away from the electrode. A method for making a microelectromechanical system device is also provided.
Abstract:
A micro-electromechanical-system (MEMS) device may be formed to include an anti-stiction polysilicon layer on one or more moveable MEMS structures of a device wafer of the MEMS device to reduce, minimize, and/or eliminate stiction between the moveable MEMS structures and other components or structures of the MEMS device. The anti-stiction polysilicon layer may be formed such that a surface roughness of the anti-stiction polysilicon layer is greater than the surface roughness of a bonding polysilicon layer on the surfaces of the device wafer that are to be bonded to a circuitry wafer of the MEMS device. The higher surface roughness of the anti-stiction polysilicon layer may reduce the surface area of the bottom of the moveable MEMS structures, which may reduce the likelihood that the one or more moveable MEMS structures will become stuck to the other components or structures.
Abstract:
Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.