Abstract:
The present invention is directed to optical communication systems and methods thereof. In various embodiments, the present invention provides method for linearizing Mach Zehnder modulators by digital pre-compensation and adjusting the gain of the driver and/or the modulation index. The pre-compensation can be implemented as a digital pre-compensation algorithm, which is a part of an adaptive feedback loop. There are other embodiments as well.
Abstract:
A buffer integrated circuit device. The device comprising an output driver formed on the substrate member, the output driver having at least a command bus and an address bus. The device has a protocol and parity checking block (“Block”). The device has a table configured in the block. The table is programmable with a plurality of timing parameters. The device has a memory state block coupled to the table and a command history table coupled to the table to process protocol information for all commands that pass through the Block. The buffer integrated circuit device utilizes the protocol checking functionality to prevent failure propagation and enables data protection even in the case of host memory controller failure or system-level failure of any signal or signals on the command, control and address bus from the host memory controller to the buffer integrated device.
Abstract:
An optical modulator device directly-coupled to a driver circuit device. The optical modulator device can include a transmission line electrically coupled to an internal VDD, a first electrode electrically coupled to the transmission line, a second electrode electrically coupled to the first electrode and the transmission line. A wave guide can be operably coupled to the first and second electrodes, and a driver circuit device can be directly coupled to the transmission line and the first and second electrodes. This optical modulator and the driver circuit device can be configured without back termination.
Abstract:
The present systems include a memory module containing a plurality of RAM chips, typically DRAM, and a memory buffer arranged to buffer data between the DRAM and a host controller. The memory buffer includes an error detection and correction circuit arranged to ensure the integrity of the stored data words. One way in which this may be accomplished is by computing parity bits for each data word and storing them in parallel with each data word. The error detection and correction circuit can be arranged to detect and correct single errors, or multi-errors if the host controller includes its own error detection and correction circuit. Alternatively, the locations of faulty storage cells can be determined and stored in an address match table, which is then used to control multiplexers that direct data around the faulty cells, to redundant DRAM chips in one embodiment or to embedded SRAM in another.
Abstract:
A phase interpolator (PI) is provided to adjust the phase of a clock such that the phase is aligned to an incoming data pattern from a data stream. The data can be captured from a device such as a flip-flop or the like. The present technique uses a PI (digital to phase) and a digital state machine in a feedback loop to set the correct digital code to the PI inputs to achieve an appropriate clock phase. Of course, there can be variations.
Abstract:
The present memory system includes a memory buffer having an interface arranged to buffer data and/or command bytes being written to or read from the RAM chips residing on a DIMM by a host controller. The memory buffer further includes at least one additional interface arranged to buffer data and/or command bytes between the host controller or RAM chips and one or more external devices coupled to the at least one additional interface. For example, the memory buffer may include a SATA interface and be arranged to convey data between the host controller or RAM chips and FLASH memory devices coupled to the SATA interface. The additional interfaces may include, for example, a SATA interface, an Ethernet interface, an optical interface, and/or a radio interface.
Abstract:
The present invention is directed to integrated circuits. In a specific embodiment, high frequency signals from an equalizer are directly connected to a first pair of inputs of a sense amplifier. The sense amplifier also has a second pair of inputs, which can be selectively coupled to output signals from a DAC or high frequency loopback signals. There are other embodiments as well.
Abstract:
A memory integrated circuit device is provided. The device includes a plurality of regular address inputs and at least one spare address input configured for a selected mode or an unselected mode. The device includes a plurality of control inputs, a plurality of data inputs, and a plurality of data outputs. The device has a plurality of memory arrays. Each of the memory arrays comprises a plurality of memory cells. Each of the plurality of memory cells is coupled to a data input/output. The device has a spare group of memory cells comprising a plurality of spare memory cells. Each of the plurality of spare memory cells is externally (or internally) addressable using the address match table and configured with the spare address input; whereupon the spare address input is coupled to the address match table to access the spare memory cells.
Abstract:
The present invention is directed to integrated circuits. In a specific embodiment, high frequency signals from an equalizer are directly connected to a first pair of inputs of a sense amplifier. The sense amplifier also has a second pair of inputs, which can be selectively coupled to output signals from a DAC or high frequency loopback signals. There are other embodiments as well.
Abstract:
A memory integrated circuit device is provided. The device includes a plurality of regular address inputs and at least one spare address input configured for a selected mode or an unselected mode. The device includes a plurality of control inputs, a plurality of data inputs, and a plurality of data outputs. The device has a plurality of memory arrays. Each of the memory arrays comprises a plurality of memory cells. Each of the plurality of memory cells is coupled to a data input/output. The device has a spare group of memory cells comprising a plurality of spare memory cells. Each of the plurality of spare memory cells is externally (or internally) addressable using the address match table and configured with the spare address input; whereupon the spare address input is coupled to the address match table to access the spare memory cells.