Abstract:
A vertical junction field effect transistor (JFET) is supported by a semiconductor substrate that includes a source region within the semiconductor substrate doped with a first conductivity-type dopant. A fin of semiconductor material doped with the first conductivity-type dopant has a first end in contact with the source region and further includes a second end and sidewalls between the first and second ends. A drain region is formed of first epitaxial material grown from the second end of the fin and doped with the first conductivity-type dopant. A gate structure is formed of second epitaxial material grown from the sidewalls of the fin and doped with a second conductivity-type dopant.
Abstract:
Methods and structures for forming localized, differently-strained regions in a semiconductor layer on a substrate are described. An initial, unstrained, semiconductor-on-insulator substrate may be processed to form the differently-strained regions in the original semiconductor layer. The differently-strained regions may have opposite types of strain. The strains in the different regions may be formed independently.
Abstract:
Methods and semiconductor structures formed from the methods are provided which facilitate fabricating semiconductor fin structures. The methods include, for example: providing a wafer with at least one semiconductor fin extending above a substrate; transforming a portion of the semiconductor fin(s) into an isolation layer, the isolation layer separating a semiconductor layer of the semiconductor fin(s) from the substrate; and proceeding with forming a fin device(s) of a first architectural type in a first fin region of the semiconductor fin(s), and a fin device(s) of a second architectural type in a second fin region of the semiconductor fin(s), where the first architectural type and the second architectural type are different fin device architectures.
Abstract:
Disclosed herein is a sensor chip including at least one sensing device and a control circuit. The control circuit is configured to receive configuration data as input, and acquire data from the at least one sensing device in accordance with the configuration data. The control circuit classifies a context of the at least one sensing device relative to its surroundings based on analysis of the acquired data in accordance with the configuration data.
Abstract:
An electronic device includes a printed circuit board (PCB) having at least one conductive trace thereon. A system on chip (SoC) is mounted on the PCB and electrically coupled to the conductive trace. A sensor chip is mounted on the PCB in a spaced apart relation with the SoC and electrically coupled to the conductive trace such that the sensor chip and SoC are electrically coupled. The sensor chip includes an accelerometer and/or a gyroscope, and a control circuit. The control circuit is configured to receive configuration data as input, acquire data from the accelerometer and/or the gyroscope. The control circuit is also configured to process the data so as to generate a context of the electronic device relative to its surroundings, the processing being performed in using a processing technique operating in accordance with the configuration data, and output the context.
Abstract:
A system and method for correcting errors in an ECC block using soft-decision data. In an embodiment, a soft-decision ECC decoding method, uses “soft” data indicative of how reliable bits of data are when read out. Such a method may use an update module for receiving and manipulating the soft-decision data and iteratively change bits or groups of bits based upon an ordering of the reliability factors. Then a calculator module may determine the total number of errors still remaining after each iteration. Determining just the total number of errors instead of the actual locations is far less computationally intensive, and therefore, many combination of potential flip-bit combination may be analyzed quickly to determine if any combination might reduce the total number of errors enough to be handled by the conventional hard-decision ECC decoding method.
Abstract:
A thermoelectric device includes a plurality of thin-film thermoelectric elements. Each thin-film thermoelectric element is a Seebeck-Peltier device. The thin-film thermoelectric elements are electrically coupled in parallel with each other. The thermoelectric device may be fabricated using conventional semiconductor processing technologies and may be a thin-film type device.
Abstract:
A method for making a semiconductor device may include forming a dummy gate above a semiconductor layer on an insulating layer, forming sidewall spacers above the semiconductor layer and on opposing sides of the dummy gate, forming source and drain regions on opposing sides of the sidewall spacers, and removing the dummy gate and underlying portions of the semiconductor layer between the sidewall spacers to provide a thinned channel region having a thickness less than a remainder of the semiconductor layer outside the thinned channel region. The method may further include forming a replacement gate stack over the thinned channel region and between the sidewall spacers and having a lower portion extending below a level of adjacent bottom portions of the sidewall spacers.
Abstract:
A method of making an inkjet print head may include forming, by sawing with a rotary saw blade, continuous slotted recesses in a first surface of a wafer. The continuous slotted recesses may be arranged in parallel, spaced apart relation, and each continuous slotted recess may extend continuously across the first surface. The method may further include forming discontinuous slotted recesses in a second surface of the wafer to be aligned and coupled in communication with the continuous slotted recesses to define alternating through-wafer channels and slotted recess portions. The method may further include selectively filling the residual slotted recess portions to define through-wafer ink channels.
Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed using two epitaxial layers of different lattice constants that are grown over a bulk substrate. A first thin, strained, epitaxial layer may be cut to form strain-relieved base structures for fins. The base structures may be constrained in a strained-relieved state. Fin structures may be epitaxially grown in a second layer over the base structures. The constrained base structures can cause higher amounts of strain to form in the epitaxially-grown fins than would occur for non-constrained base structures.