Abstract:
Disclosed are a high-performance polyoxometalate catalyst and a method of preparing the same. More particularly, disclosed are a high-performance polyoxometalate catalyst which may enhance activity and selectivity by controlling the content of vanadium, etc. exhibits superior reproducibility, and may produce unsaturated carboxylic acid with high yield and long lifespan from unsaturated aldehyde, and a method of preparing the same.
Abstract:
A method for coating catalyst on a diesel particulate filter includes the steps of, preparing a filter main body by using a substance through which a plurality of pores are formed. coating firstly a reduction catalytic agent on the filter main body by immersing the filter main body into a wash coat solution containing the reduction catalytic agent. coating secondly the reduction catalytic agent on a region of the filter main body where a distribution of the firstly coated reduction catalytic agent is relatively low by providing absorption pressure to the other channel opposite to the selected one channel while supplying the wash coat solution containing the reduction catalytic agent to one channel that is selected from the inlet channel and the outlet channel of the filter main body that has been coated firstly.
Abstract:
Described is a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. The catalyst is a crystalline material that is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200° C. and 600° C. A method for selectively reducing nitrogen oxides and an exhaust gas treatment system are also described.
Abstract:
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.
Abstract:
An oxidation catalyst for treating an exhaust gas from a diesel engine and an exhaust system comprising the oxidation catalyst are described. The oxidation catalyst comprises: a first washcoat region for oxidising carbon monoxide (CO) and hydrocarbons (HCs), wherein the first washcoat region comprises a first platinum group metal (PGM) and a first support material; a second washcoat region for oxidising nitric oxide (NO), wherein the second washcoat region comprises platinum (Pt), manganese (Mn) and a second support material; and a substrate having an inlet end and an outlet end; wherein the second washcoat region is arranged to contact the exhaust gas at the outlet end of the substrate and after contact of the exhaust gas with the first washcoat region.
Abstract:
Disclosed are washcoats, coated substrates formed from such washcoats, and catalytic converters for use in diesel applications, such as heavy duty diesel applications. Methods of preparing the coated substrates are also disclosed.
Abstract:
A method of producing a catalyst, comprises the steps of: (a) applying to a template (such as a bio-template) a metal alkoxide or a metal halide; (b) reacting the metal alkoxide or metal halide to form a metal oxide catalyst; and, optionally, (c) removing the template from the metal oxide catalyst of step (b). The resulting biomimetic metal oxide has been found to have excellent catalytic (especially photocatalytic) properties.
Abstract:
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.
Abstract:
A catalyst unit may include a first brick having a first noble metal layer formed along an exhaust gas passage thereof and being disposed on a space that an exhaust gas flow rate may be a predetermined rate, a second brick being disposed onto the first brick and having a second noble metal layer formed along an exhaust gas passage thereof, wherein the second brick may be disposed on a space that an exhaust gas flow rate may be lower than the predetermined rate, and wherein the first brick and the second brick may be attached together to fix the second brick onto the first brick.
Abstract:
One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.