Abstract:
A semiconductor device and its manufacturing method, relating the semiconductor techniques. The semiconductor device manufacturing method comprises: providing a first semiconductor structure, wherein the first semiconductor structure comprises a first part comprising a plurality of films separated from each other, and a first bonding component on the first part; forming an anti-stick layer on the first part covering the plurality of films; providing a second semiconductor structure comprising a second part and a second bonding component on the second part; and bonding the first bonding component with the second bonding component, so that the first part is bonded to the second part. This inventive concept prevents the adhesion of neighboring films in a semiconductor device.
Abstract:
A method of manufacturing microstructures, such as MEMS or NEMS devices, including forming a protective layer on a surface of a moveable component of the microstructure. For example, a silicide layer may be formed on a portion of at least four different surfaces of a poly-silicon mass that is moveable with respect to a substrate of the microstructure. The process may be self-aligning.
Abstract:
A pressure sensor using the MEMS device comprises an airtight ring surrounding a chamber defined by the first substrate and the second substrate. The airtight ring extends from the upper surface of the second substrate to the surface between the first substrate and the second substrate and further breaks out the surface. The pressure sensor utilizes the airtight ring to retain the airtightness of the chamber. The manufacture method of the pressure sensor is also disclosed.
Abstract:
A wafer-level passivation structure of a micro-device, a micro-device including the same, and methods of manufacturing the wafer-level passivation structure and the micro-device may be provided. In particular, the passivation structure may include a spacer that is disposed on a substrate, covers a portion of the first surface, and has an elastic property, and an anti-adhesion layer that is disposed on a surface of the substrate between the spacer. The spacer may form a lattice pattern. The spacer may be formed of a silicon. The anti-adhesion layer may be a metallic film, an oxide film, or a nitride film.
Abstract:
This disclosure provides systems, methods and apparatus for providing relatively thinner and less stiff compliant beams for a shutter assembly. A protective coating is deposited and patterned over the shutter assembly before it is released from a sacrificial mold over which the shutter assembly is formed. Because some primary surfaces of the compliant beams are in contact with the sacrificial mold, these primary surfaces are not coated with the protective coating. Therefore, when the shutter assembly is finally released, the resulting compliant beams are relatively thinner and less stiff providing a reduction in an actuation voltage used to operate the shutter assembly. In some instances, the protective coating is patterned into discontinuous segments before release.
Abstract:
A method for fabricating a MEMS device includes depositing and patterning a first sacrificial layer onto a silicon substrate, the first sacrificial layer being partially removed leaving a first remaining oxide. Further, the method includes depositing a conductive structure layer onto the silicon substrate, the conductive structure layer making physical contact with at least a portion of the silicon substrate. Further, a second sacrificial layer is formed on top of the conductive structure layer. Patterning and etching of the silicon substrate is performed stopping at the second sacrificial layer. Additionally, the MEMS substrate is bonded to a CMOS wafer, the CMOS wafer having formed thereupon a metal layer. An electrical connection is formed between the MEMS substrate and the metal layer.
Abstract:
An array of microbumps with a layer or coating of non-superhydrophobic material yields a superhydrophobic surface, and may also have a contact angle hysteresis of 15 degrees or less. A surface with such an array may therefore be rendered superhydrophobic even though the surface structure and materials are not, by themselves, superhydrophobic.
Abstract:
This disclosure provides systems, methods and apparatus for providing relatively thinner and less stiff compliant beams for a shutter assembly. A protective coating is deposited and patterned over the shutter assembly before it is released from a sacrificial mold over which the shutter assembly is formed. Because some primary surfaces of the compliant beams are in contact with the sacrificial mold, these primary surfaces are not coated with the protective coating. Therefore, when the shutter assembly is finally released, the resulting compliant beams are relatively thinner and less stiff providing a reduction in an actuation voltage used to operate the shutter assembly. In some instances, the protective coating is patterned into discontinuous segments before release.
Abstract:
A wireless device that includes an access point (AP) scanner, a transceiver, and a controller coupled to the AP scanner and transceiver. The AP scanner is configured to scan wireless network channels utilized by one or more APs to transmit data packets, probe responses, and beacons. The transceiver is configured to transmit one or more probe requests to the one or more APs and receive one or more probe responses and beacons from the one or more APs. The controller is configured to determine a proximate geographic position of the wireless device based on signal strength of the one or more probe responses and beacons received from the one or more APs. The controller also dynamically adapts a parameter utilized in determining the proximate geographic position of the wireless device.
Abstract:
A device comprises a MEMS component comprising at least one surface and a coating disposed on at least a portion of the surface. The coating comprises a compound of the formula M(CnF2n+1Or), wherein M comprises a polar head group, and wherein n≧2r. The value of n may range from 2 to about 20, and the value of r may range from 1 to about 10. The value of n plus r may range from 3 to about 30, and a ratio of n:r may have a value of about 2:1 to about 20:1.
Abstract translation:一种装置包括MEMS组件,其包括设置在该表面的至少一部分上的至少一个表面和涂层。 涂层包含式M(C n F 2n + 10r)的化合物,其中M包括极性头基,其中n≥2r。 n的值可以在2至约20的范围内,并且r的值可以在1至约10的范围内.n加r的值可以在3至约30的范围内,并且n:r的比可以具有值 为约2:1至约20:1。