Abstract:
A plant monitor includes: a main control chip, a wireless communication chip connected with the main control chip, and at least one growth environment monitoring sensor connected with the main control chip. The at least one growth environment monitoring sensor includes at least one of an illumination sensor, a temperature sensor, a humidity sensor, or a soil conductivity sensor. The main control chip is configured to acquire growth environment data collected by the at least one growth environment monitoring sensor, and send the growth environment data to a mobile terminal via the wireless communication chip. The mobile terminal is configured to generate plant cultivation reference information according to the growth environment data.
Abstract:
A dark photodiode that is optically isolated from the signal photodiode and having a dark current in the absence of photons. A reference generating circuit configured to produce a reference voltage based on voltage at an anode of the signal photodiode. A voltage regulator circuit configured to regulate dark photodiode voltage at an anode of the dark photodiode based on the reference voltage. A current mirror circuit configured to produce, at an anode connecting to the signal photodiode, a mirrored current that is a mirrored version of a portion of the dark current.
Abstract:
An auto-darkening filter of a welding shield has a brightness-sensing unit, an optical shutter and a processor. The brightness-sensing unit generates a first signal or a second signal. In a high-sensitivity mode, the processor controls the optical shutter to operate in a dark state or a bright state depending on intensity of the first signal being higher or lower than a threshold value. In a low-sensitivity mode, the processor controls the optical shutter to operate in the bright state when intensity of the second signal is lower than the threshold value, and automatically change to the high-sensitivity mode from the low-sensitivity mode when intensity of the second signal is higher than the threshold value.
Abstract:
An opto-electronic converter includes a plurality of light-receiving elements configured to convert light of different colors into analog signals, each of the analog signals representing a pixel, an amplifier unit configured to amplify the analog signals, into which the light is converted by the light-receiving elements, in each pixel group, the pixel group including a plurality of the light-receiving elements, the plurality of light-receiving elements converting light of different colors, and a gain switch unit configured to switch, for each of the light-receiving elements included in the pixel group, a gain of the amplifier unit to a gain determined in advance depending on a color of the light converted by the light-receiving element.
Abstract:
The present disclosure is directed to the method and system which use an image caught by a photographic device for calculating a brightness of a space and acquiring a state of an object, and adjust the illuminant device and/or the shading device for the space to make the brightness of the space achieve the proper level.
Abstract:
A method to measure and report electromagnetic radiation power includes receiving electromagnetic radiation and generating an electrical signal having a magnitude based on the power of the electromagnetic radiation. An adjustable gain may be applied to the electrical signal to generate an amplified electrical signal that may be sampled to generate a digital sample. The adjustable gain may be controlled based on the value of the digital sample and the digital sample may be associated with a gain value. One or more calibration factors may be selected based on the gain value associated with the digital sample and the selected calibration factor(s) may be used to calculate the power of the electromagnetic radiation.
Abstract:
In the field of imaging devices comprising a detector generating electric charges in response to incident photon radiation, and an analog-to-digital conversion circuit forming means for reading the quantity of electric charges generated, an analog-to-digital conversion circuit comprises: a comparator which can switch depending on the comparison between a potential on an integration node and a predetermined threshold potential, a counter incrementing with each switch of the comparator, a counter-charge injection circuit injecting a quantity Qc of counter-charges on the integration node with each switch of the comparator, and control means which determine the quantity Qc of counter-charges injected. The analog-to-digital conversion circuit is characterized in that the control means determine the quantity Qc of counter-charges injected as a function of a value of the counter.
Abstract:
A solar blind corona camera designed specifically for use on 60 Hz or 50 Hz AC power distribution equipment is based on the fact that electrical discharge corona only occurs above some voltage threshold level on the positive and negative voltage peaks of the AC power waveform. Between these peaks, when the AC voltage is below the discharge corona voltage threshold, the electrical discharge and resulting corona are extinguished. An image sensor is used to both capture the corona-plus-ambient light image during the corona period and the ambient light image during the non-corona period. The ambient light image is then subtracted from the corona-plus-ambient light image leaving only the corona light image which is annunciated and displayed along with the ambient light image. This process effectively renders the corona camera solar blind so it can be used both at night and during daylight.
Abstract:
In order to detect a passage timing of a light beam and to suppress cost, a light beam detection circuit (2) includes a detection signal generation section (34) configured to receive a light beam for scanning of a scanning target (101A) with one optical sensor (10), and generate a detection signal corresponding to an amount of received light; a reference signal output section (44) configured to output a reference signal that is in proportion to a light-amount control signal of a light-emission element (LD1) that emits the light beam; and a synchronizing signal generation section (35) configured to compare a detection signal generated by the detection signal generation section (34) with a reference signal output from the reference signal output section (44) to generate a synchronizing signal to determine a position to start scanning of the scanning target (101A) with the light beam.
Abstract:
In embodiments of object presence and condition detection, a light is emitted that is directed at a first edge of a translucent object to pass through the translucent object, such as a lens. An intensity of the light is detected proximate an opposing, second edge of the translucent object. A presence and/or a condition of the translucent object can then be determined based on the detected intensity of the light that passes through the object. The translucent object can be implemented as a multi-lens array, and a laser light is directed through optic surfaces of the multi-lens array with a laser. The presence and the condition of the multi-lens array can be continuously determined as a safety compliance of the laser light being directed through the multi-lens array.