Abstract:
An exhaust after-treatment system including an exhaust passage, a lean-NOx trap (LNT) provided in the exhaust passage, a tank carrying an aqueous reagent, an electrochemical cell in communication with the tank and configured to receive the aqueous reagent therefrom, the electrochemical cell configured to convert the aqueous reagent into a hydrogen exhaust treatment fluid for purging the LNT, and a controller in communication with the electrochemical cell, wherein the controller is configured to vary an amount of the hydrogen exhaust treatment fluid produced by the electrochemical cell.
Abstract:
An exhaust treatment device includes first and second substrates positioned in parallel within a housing. A baffle plate supports the substrates, an inlet tube and an outlet pipe, and defines a portion of a first chamber. First ends of the substrates and a second end of the inlet tube is in fluid communication with the first chamber. A partition supports the substrates, the inlet tube and the outlet pipe and defines a portion of a second chamber separate from first chamber. Second ends of the substrates and a second open end of the outlet pipe is in fluid communication with the second chamber. All of the exhaust flows in a first direction through the inlet tube, reverses direction through the substrates and reverses direction again to flow through the outlet pipe.
Abstract:
An exhaust treatment fluid system includes a tank housing for storing an exhaust treatment fluid. A suction tube includes a first end positioned within the housing and a second end in communication with a suction port of the housing. An elongated laminar flow device is secured to a discharge port of the housing such that exhaust treatment fluid flows along surfaces thereof as the exhaust treatment fluid is returned to the tank housing. The laminar flow device includes a non-circular cross-section.
Abstract:
A shock absorber for a vehicle includes a pressure tube that defines a fluid chamber and a piston disposed within the fluid chamber. The piston divides the fluid chamber into an upper working chamber and a lower working chamber, and defines a compression passage and a rebound passage. A valve disc assembly of the shock absorber engages the piston and controls the flow of fluid between the upper and lower working chambers. The valve disc assembly includes a check disc and an orifice disc. The check disc is disposed between the piston and the orifice disc. The orifice disc defines an orifice, and the check disc prohibits the flow of fluid through the orifice as the fluid flows in a first direction and permits the flow of fluid through the orifice as the fluid flows in a second direction opposite of the first direction.
Abstract:
An exhaust after-treatment system for treating an exhaust produced by an engine. The exhaust after-treatment system includes an exhaust passage, at least one catalytic exhaust after-treatment component in communication with the exhaust passage for treating the exhaust, and a water-removal device in communication with the exhaust passage that receives a portion of the exhaust therein at a location positioned upstream from the catalytic exhaust after-treatment component. The water-removal device is defined by a housing that includes a water-removal membrane that separates water from the portion of the exhaust to provide a permeate that is enriched with water, and to produce a retentate that is water depleted that facilitates the treating of the exhaust by the catalytic exhaust after-treatment component.
Abstract:
A shock absorber is disclosed having a secondary dampening assembly for dampening movement of an inner assembly within the shock absorber. The secondary dampening assembly includes a hydraulic stop piston and a hydraulic stop sleeve. The hydraulic stop piston is carried by an extender with a gap defined radially between the hydraulic stop piston and the extender to allow radial movement. The hydraulic stop sleeve has an open end for receiving the hydraulic stop piston and a flow groove that extends longitudinally along an inner surface of the hydraulic stop sleeve.
Abstract:
An automobile includes an active suspension system and a leveling system. The leveling system receives high pressure fluid from the active suspension system in order to change static vehicle height and compensate for static load changes.
Abstract:
The present disclosure relates to an air spring apparatus for use with a cabin of a vehicle. The apparatus has an upper assembly, a lower assembly, a shock absorber, a bladder, a flexible bumper element and a control element. The shock absorber has a piston rod protruding therefrom and extending through the other one of the upper and lower assemblies. The bladder is attached to the upper and lower assemblies. The flexible bumper element is secured to the piston rod adjacent one of the upper and lower assemblies, and secured to the other one of the upper and lower assemblies. The control element is secured to the flexible bumper element at a first end, and to a valve at a second end, and controls operation of the valve. The flexible bumper element can flex in response to torsional or tilting forces experienced by the one of the upper and lower assemblies, to thus help to limit these forces from being imparted to the control element.
Abstract:
A system may include an engine, an exhaust passage, a carbon dioxide capture system, and a dosing valve. The engine includes a combustion chamber. The exhaust passage receives exhaust gas from the engine. The carbon dioxide capture system receives exhaust gas from the exhaust passage and may include a separation device, a pump and a first tank. The separation device removes carbon dioxide from the exhaust gas. The pump pumps the removed carbon dioxide to the first tank. A second tank may receive and store carbon dioxide from the first tank. The dosing valve may be in fluid communication with and disposed downstream of the second tank. The dosing valve may regulate a flow of carbon dioxide from the second tank to the engine.
Abstract:
An exhaust aftertreatment system may include a housing, an aftertreatment device, and a cantilevered flow distributing element. The housing receives exhaust gas output from an engine and has a main body and an exhaust gas inlet that is angled relative to the main body. The flow distributing element is disposed within the housing upstream of the exhaust aftertreatment device and includes a baffle plate and a collar. The baffle plate is attached to an inner wall of the main body. The collar may include a plurality of first apertures, a downstream axial edge and an upstream axial edge. A portion of the downstream axial edge may abut an upstream-facing surface of the baffle plate. The baffle plate may have a plurality of second apertures extending through the upstream-facing surface. The collar may extend across and partially block at least some of the second apertures.