Abstract:
An apparatus and method for recognizing a gait motion by detecting a landing point in time of a foot of a user based on sensed acceleration information, inferring a gait motion based on right and left hip joint angle information of the user sensed at the detected landing point in time of the foot of the user, and detecting a landing leg between both legs of the user based on the inferred gait motion may be provided.
Abstract:
A handcart includes a main body, main wheels, support portions, auxiliary wheels, an extended portion, connection portions, a tilt angle sensor, and a gyro sensor. The main body is supported at one end thereof to be rotatable in a pitch direction relative to a pair of the main wheels. A bar-shaped connection portion of the extended portion is inserted through a tube portion at another end of the main body. The extended portion extends from the other end of the main body to a rear side in a travelling direction of the handcart. A region of each support portion from a rotation shaft of the main wheel to a rotation shaft of the auxiliary wheel and the extended portion are connected to each other by the connection portion. The connection portion is supported to be rotatable in the pitch direction relative to the support portion and the extended portion.
Abstract:
A method for controlling a walking assistant apparatus includes: scanning a user so as to generate information associated with gait of the user; detecting a torque applied to a torque sensor; estimating a speed of the user based on the information; calculating a compliant motion speed, and a compliant rotational speed; and controlling the motion unit to move at the compliant motion speed and to turn at the compliant rotational speed. This disclosure provides an autonomous obstacle avoidance mechanism; by combining the obstacle avoidance mechanism and the compliance controls, the walking-assistance apparatus is able to help user prevent from collisions with obstacles when walking in an environment with obstacles.
Abstract:
A body weight support system includes a trolley, a powered conductor operative coupled to a power supply, and a patient attachment mechanism. The trolley can include a drive system, a control system, and a patient support system. The drive system is movably coupled to a support rail. At least a portion of the control system is physically and electrically coupled to the powered conductor. The patient support mechanism is at least temporarily coupled to the patient attachment mechanism. The control system can control at least a portion of the patient support mechanism based at least in part on a force applied to the patient attachment mechanism.
Abstract:
An electromechanical chest compressor is provided with a reciprocating member for contacting a patient's chest; the reciprocating member extends from and retracts into a housing positioned on a patient's chest maintained in contact with a patient by a circumscribing thoracic cavity belt. The reciprocating member is driven by a follower in contact with a rotating drive screw. The drive screw is mounted coaxially with and internally of a permanent magnet DC motor and is connected to the motor's rotor. The current supplied to each of the individual stator windings of the motor is independently controlled by a control system that accesses addresses in a look-up table to determine the value of the current to be supplied to the individual windings.
Abstract:
A vibratory massaging device having a spaced plurality of proximity sensors distributed on a massaging surface of the device, and a control circuit operative for controlling vibratory intensities in response to activation of particular ones of the sensors being close to a user's body parts being massaged. The device can be configured as a dildo, including both main and secondary vibrators, the secondary vibrator being within an arm portion that is configured for clitoral stimulation. At least one of the vibrators is automatically driven at increased intensity as penetration increases.
Abstract:
A walking training apparatus includes a walking assistance apparatus for a leg of a trainee, a first wire winding mechanism for pulling a wire for the leg upward and forward, pulling control means for controlling the first wire winding mechanism to pull the wire with a first pulling force, and storage amount detection means for detecting a storage amount of the wire. The pulling control means controls the first wire winding mechanism so that the first wire winding mechanism pulls the wire with a second pulling force larger than the first pulling force in a swinging start period in which the storage amount of the wire detected by the storage amount detection means is equal to or smaller than a predetermined storage amount of the wire in a period including a timing when the wire of the first wire winding mechanism changes from a pulling-out state to a winding state.
Abstract:
A handcart includes a main body, main wheels, support portions, auxiliary wheels, an extended portion, connection portions, a tilt angle sensor, and a gyro sensor. The main body is supported at one end thereof to be rotatable in a pitch direction relative to a pair of the main wheels. A bar-shaped connection portion of the extended portion is inserted through a tube portion at another end of the main body. The extended portion extends from the other end of the main body to a rear side in a travelling direction of the handcart. A region of each support portion from a rotation shaft of the main wheel to a rotation shaft of the auxiliary wheel and the extended portion are connected to each other by the connection portion. The connection portion is supported to be rotatable in the pitch direction relative to the support portion and the extended portion.
Abstract:
A method of analyzing a physiological (e.g., an ECG) signal during application of chest compressions. The method includes acquiring a physiological signal during application of chest compressions; acquiring the output of a sensor from which information on the velocity of chest compressions can be determined; and using the information on the velocity to reduce at least one signal artifact in the physiological signal resulting from the chest compressions.