Abstract:
A driving apparatus for a washing machine includes a single-phase outer rotor brushless motor and a driving wheel. The motor drives the driving wheel and includes a stator and a rotor. The stator includes a stator core and windings wound around the stator core. The rotor includes a rotor yoke, and a permanent magnet. An inner surface of the permanent magnet and an outer surface of a tooth tip are opposed to each other and define an uneven gap there between for allowing the rotor to rotate relative to the stator. A radial width of the gap associated with each magnetic pole progressively increases from a center portion toward circumferential ends of the magnetic pole, and a radial width of the gap associated with each magnetic pole is symmetrical with respect to a center axis of the magnetic pole along the circumferential direction.
Abstract:
An apparatus and corresponding method for maintaining an air gap between a stator and rotor in an electro-mechanical energy converter is provided. The apparatus includes a structural sleeve and a plurality of stator sections attached to an inner surface of the structural sleeve. A hub is enclosed by the structural sleeve and is concentric with the structural sleeve. A plurality of rotor sections is flexibly coupled to the hub and is enclosed by the structural sleeve. A rail system is positioned within the structural sleeve and is concentric with the structural sleeve. The rail system guides the rotor sections in a substantially circular path and defines an air gap between the plurality of stator sections and plurality of rotor sections.
Abstract:
An electromagnetic drive mechanism (10) comprises a rotor (50) configured to rotate within a stator (30). The rotor (50) and stator (30) have multiple poles (56, 36), wherein each pole comprises a radial inner portion (564, 362) and a radial outer portion (562, 364). The radial inner portions (564, 362) and radial outer portions (562, 364) of the rotor (50) and stator (30) have different heights, forming a step (566, 366) between the radial inner and outer portions of the rotor (50) and stator (30). This configuration allows for overlapping radial surfaces in addition to overlapping axial surfaces during operation of the drive mechanism (10), thereby increasing the total overlap area and thus the reluctance torque, and potentially improving response speed while allowing for a more compact device (10).
Abstract:
A permanent magnet rotary electric machine includes: a stator in which a plurality of teeth and a plurality of slots are formed on an inner periphery of a cylindrical stator core, and a winding wire is wound around the teeth so as to be disposed in the slots; and a rotor disposed in a hollow portion of the stator with an air gap between the rotor and the stator. In the rotor, 2n or more (n is a natural number equal to or larger than 1) radial projections are provided on an outer periphery of a rotor core, and a ferrite magnet is disposed between adjacent projections. A radial height of the projection is less than a thickness of middle of the ferrite magnet.
Abstract:
A permanently excited synchronous machine includes a stator; a winding system arranged in grooves of a laminated core of the stator and forming winding overhangs on end faces of the laminated core, and a rotor connected in fixed rotative engagement to the shaft and having ferrite magnets which extend axially beyond the end faces of the laminated core. The rotor electromagnetically interacts with the stator across an air gap there between during operation of the permanently excited synchronous machine to cause a rotation about an axis of rotation. A flux concentration element is provided radially across each of the ferrite magnets of a magnetic pole and bundles magnetic field lines of the ferrite magnet onto an axial length of the laminated core of the stator. The flux concentration elements and held by a fixing element on the ferrite magnets of a magnetic pole.
Abstract:
A permanent magnet embedded motor includes a rotor and permanent magnets. The outer circumferential surface of the rotor is formed by divided outer circumferential surfaces divided at equal angle intervals in a circumferential direction corresponding to permanent magnets. The divided outer circumferential surface is formed by a first curved surface, a radial direction distance of which from a rotor axis is maximized in a circumferential direction center of divided outer circumferential surface and second curved surfaces formed from the circumferential direction both ends to the circumferential direction center and crossing the first curved surface. The second curved surfaces are formed by—arcuate surfaces each having the rotor axis as a central axis. A distance between both ends of the first curved surface is smaller than the width of a permanent magnet in a direction orthogonal to a radial direction in the circumferential direction center.
Abstract:
A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighboring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained. The invention further provides a wind turbine (1) comprising such a generator (5) and a method for performing service on a generator (5).
Abstract:
Method for fabricating an electric miniature motor, substantially comprising a housing assembly, a rotor assembly, a power transmission and bearing assembly and a second bearing assembly, wherein the housing assembly comprises a housing tube having a division extending in the axial direction over an entire length of the housing tube, comprising the following steps of a) inserting a cylindrical core having a defined outer diameter into the housing assembly; b) adjusting an inner diameter of the housing assembly to an outer diameter of the core; c) fixing the inner diameter of the housing assembly by fixing the housing tube in an area of the division; and d) removing the cylindrical core.
Abstract:
A motor includes poles P having a remanence Mr of 0.9 T or more, a coercivity HcJ of 0.80 MA/m or more, and a maximum energy product (BH)max of 150 kJ/m3 or more, which sets a center point Pc of the magnetic poles in a circumferential direction on a rotor outer circumferential surface to a maximum thickness tmax, wherein when a line connecting the Pc and a rotational axis center Rc is Pc-Rc, a straight line connecting an arbitrary point Px in the circumferential direction on the rotor outer circumferential surface and the Rc is Px-Rc, an apex angle of the lines Pc-Rc and Px-Rc is θ, a number of pole pairs is Pn, a circumferential direction magnetic pole end is Pe, and a magnetic pole end biasing distance ΔLPe of the circumferential direction magnetic pole ends Pe is α×tmax (α is a coefficient).
Abstract translation:马达包括具有0.9T以上的剩余磁道Mr的磁极P,0.80MA / m以上的矫顽磁力HcJ和150kJ / m 3以上的最大能量乘积(BH)max,设定中心点Pc 在转子外周面上的圆周方向上的磁极为最大厚度tmax,其中,当连接Pc和旋转轴中心Rc的线为Pc-Rc时,将圆周方向上的任意点Px的直线连接到 转子外圆周表面和Rc是Px-Rc,线Pc-Rc和Px-Rc的顶角是θ,极数为Pn,圆周方向磁极端为Pe,磁性 极端偏置距离Dgr;圆周方向磁极端部Pee的LPe为α×tmax(α为系数)。
Abstract:
An assembly for supporting a motor of a vehicle powertrain includes a housing, a stator secured to the housing, a bearing having a radial position established by the housing, a member contacting the bearing, and a rotor secured to the member and including a radial outer surface spaced radially from the stator by an air gap established by contact between the bearing and the member.