Abstract:
A charged particle system such as a multi beam lithography system. A manipulator device manipulates one or more charged particle beams. The manipulator device includes at least one through opening in the plane of the planar substrate for passing at least one charged particle. Each through opening is provided with electrodes arranged in a first set of multiple first electrodes along a first part of a perimeter of the through opening and in a second set of multiple second electrodes along a second part of the perimeter. An electronic control circuit is arranged for providing voltage differences the electrodes in dependence of a position of the first and second electrode along the perimeter of the through opening.
Abstract:
Provided is an electrostatic lens array, including multiple substrates arranged with intervals, each of the multiple substrates having an aperture for passing a charged particle beam, in which: in a travelling direction of the charged particle beam, a peripheral contour line formed by any one of surfaces of the multiple substrates other than an upper surface of a most upstream substrate and a lower surface of a most downstream substrate has a protruding portion protruding from a peripheral contour line of one of the upper surface of the most upstream substrate and the lower surface of the most downstream substrate; and a position of the protruding portion is defined by a position regulating member, whereby parallelism is adjustable so that a surface including the protruding portion is parallel to a surface to be irradiated with the charged particle beam after passing through the aperture.
Abstract:
A charged particle beam lens includes a first electrode on a downstream side and a second electrode on an upstream side in a travelling direction of a charged particle beam. Each of the first electrode and the second electrode has a first through hole formed therein, through which the charged particle beam passes. The second electrode further has a second through hole formed therein, through which the charged particle beam does not pass. A distance defining member is provided between the first electrode and the second electrode such that the first electrode and the second electrode are spaced away from each other. A gap is surrounded the first electrode, the second electrode, and the distance defining member, wherein both the first through and the second through hole communicate to the gap. A third through hole passes through the first electrode and the second electrode in the travelling direction of the charged particle beam, and the third through hole is provided outside of the gap and does not communicate to the gap.
Abstract:
The present invention relates to a projection lens assembly module for directing a multitude of charged particle beamlets onto an image plane located in a downstream direction, and a method for assembling such a projection lens assembly. In particular the present invention discloses a modular projection lens assembly with enhanced structural integrity and/or increased placement precision of its most downstream electrode.
Abstract:
A plasma processing apparatus comprises a plasma source configured to produce a plasma in a plasma chamber, such that the plasma contains ions for implantation into a workpiece. The apparatus also includes a focusing plate arrangement having an aperture arrangement configured to modify a shape of a plasma sheath of the plasma proximate the focusing plate such that ions exiting an aperture of the aperture arrangement define focused ions. The apparatus further includes a processing chamber containing a workpiece spaced from the focusing plate such that a stationary implant region of the focused ions at the workpiece is substantially narrower that the aperture. The apparatus is configured to create a plurality of patterned areas in the workpiece by scanning the workpiece during ion implantation.
Abstract:
A charged particle beam drawing apparatus includes an electrostatic lens including an electrode member and configured to project the plurality of charged particle beams onto the substrate via the electrode member. In the electrode member are formed a plurality of first openings via which the plurality of charged particle beams pass, and a plurality of second openings different from the plurality of first openings, a total area of the plurality of second openings being not smaller than a total area of the plurality of first openings.
Abstract:
The invention relates to a charged particle system such as a multi beam lithography system, comprising a manipulator device for manipulation of one or more charged particle beams, wherein the manipulator device comprises at least one through opening in the plane of the planar substrate for passing at least one charged particle beam there through. Each through opening is provided with electrodes arranged in a first set of multiple first electrodes along a first part of a perimeter of said through opening and in a second set of multiple second electrodes along a second part of said perimeter. An electronic control circuit is arranged for providing voltage differences the electrodes in dependence of a position of the first and second electrode along the perimeter of the through opening.
Abstract:
Provided is a method for controlling electron beams in a multi-microcolumn, in which unit microcolumns having an electron emitter, a lens, and a deflector are arranged in an n×m matrix. A voltage is uniformly or differentially applied to each electron emitter or extractor. The same control voltage or different voltages are applied to a region at coordinates in a control division area of each extractor to deflect the electron beams. Lens layers not corresponding to the extractors are collectively or individually controlled so as to efficiently control the electron beams of the unit microcolumn. Further, a multi-microcolumn using the method is provided.
Abstract:
The invention relates to a multiple beam charged particle optical system, comprising an electrostatic lens structure with at least one electrode, provided with apertures, wherein the effective size of a lens field effected by said electrode at a said aperture is made ultimately small. The system may comprise a diverging charged particle beam part, in which the lens structure is included. The physical dimension of the lens is made ultimately small, in particular smaller than one mm, more in particular less than a few tens of microns. In further elaboration, a lens is combined with a current limiting aperture, aligned such relative to a lens of said structure, that a virtual aperture effected by said current limiting aperture in said lens is situated in an optimum position with respect to minimizing aberrations total.
Abstract:
An X-ray apparatus that creates a virtual source having a narrow energy bandwidth and enables a high-resolution X-ray diffraction measurement; a method of using the same; and an X-ray irradiation method are provided.An X-ray apparatus 100 includes a spectrometer 105 that focuses a divergent X-ray beam while dispersing it and a selection part 107 that is installed in a condensing position of the condensed X-ray beam for selecting an X-ray beam having a wavelength in a specific range, allowing it to pass through, and creating a virtual source. With this arrangement, it is possible to create a virtual source having a narrow energy bandwidth at a focal point 110 and by means of the virtual source a high-resolution X-ray diffraction measurement is available. By using the X-ray apparatus 100, it is possible to sufficiently separate an X-ray beam having such an extremely narrow energy bandwidth as, for example, Kα1 ray from Kα2 ray. In addition, it is also possible to cut out part of continuous X-ray beams to create a virtual source.