Abstract:
Some embodiments include apparatuses and methods having a conductive line, a memory cell string including memory cells located in different levels the apparatus, and a select circuit including a select transistor and a coupling component coupled between the conductive line and the memory cell string. Other embodiments including additional apparatuses and methods are described.
Abstract:
An embodiment of an apparatus includes a substrate, a body semiconductor, a vertical memory access line stack over the body semiconductor, and a body connection to the body semiconductor.
Abstract:
Apparatuses and methods involving accessing memory cells are described. In one such method, chunks of memory cells in a memory array are enabled to be accessed and then one or more of the chunks are disabled from being accessed. In one such apparatus, an array includes chunks of memory cells and a chunk selector circuit coupled to each chunk to enable the memory cells in the respective chunk to be accessed. Additional embodiments are described.
Abstract:
Various apparatuses, including three-dimensional (3D) memory devices and systems including the same, are described herein. In one embodiment, a 3D memory device can include at least two sources; at least two memory arrays respectively formed over and coupled to the at least two sources; and a source conductor electrically respectively coupled to the at least two sources using source contacts adjacent one or more edges of the source. Each of the at least two memory arrays can include memory cells, control gates, and data lines. There is no data line between an edge of a source and the source contacts adjacent the edge.
Abstract:
A multi-path transistor includes an active region including a channel region and an impurity region. A gate is dielectrically separated from the channel region. A signal line is dielectrically separated from the impurity region. A conductive shield is disposed between, and dielectrically separated from, the signal line and the channel region. In some multi-path transistors, the channel region includes an extension-channel region under the conductive shield and the multi-path transistor includes different conduction paths, at least one of the different conduction paths being in the extension-channel region to conduct substantially independent of a voltage on the signal line. In other multi-path transistors, the conductive shield is operably coupled to the impurity region and the multi-path transistor includes different conduction paths, at least one of the different conduction paths being under the conductive shield to conduct substantially independent of a voltage on the signal line.
Abstract:
Some embodiments include apparatuses and methods having a first set of conductive lines, a second set of conductive lines, and memory cells located in different levels of the apparatuses and arranged in memory cell strings. At least a portion of the first set of conductive lines is configured as a first set of data lines. At least a portion of the second set of conductive lines is configured as a second set of data lines. Each of the memory strings is coupled to a respective conductive line in the first set of conductive lines and a respective conductive line in the second set of conductive lines. Other embodiments including additional apparatuses and methods are described.
Abstract:
A memory cell is programmed to at least a first threshold voltage to indicate a particular data value. After waiting for a relaxation time, the memory cell is programmed to at least a second threshold voltage to indicate the particular data value. The second threshold voltage is greater than the first threshold voltage.
Abstract:
Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.
Abstract:
Apparatuses and methods for interconnections for 3D memory are provided. One example apparatus can include a stack of materials including a plurality of pairs of materials, each pair of materials including a conductive line formed over an insulation material. The stack of materials has a stair step structure formed at one edge extending in a first direction. Each stair step includes one of the pairs of materials. A first interconnection is coupled to the conductive line of a stair step, the first interconnection extending in a second direction substantially perpendicular to a first surface of the stair step.
Abstract:
Embodiments are provided that include a memory device having a memory array including a plurality of access lines and data lines. The memory device further includes a circuit coupled to the plurality of access lines and configured to provide consecutive pulses to a selected one of the plurality of access lines. Each pulse of the consecutive pulses includes a first voltage and a second voltage. The first voltage is greater in magnitude than the second voltage, and the first voltage is applied for a shorter duration than the second voltage.