Abstract:
The biocontainer of the present invention provides a low cost, simple solution of many of the problems encountered during shipping, freezing and thawing of biopharmaceutical materials. The present invention enables a user to monitor the temperature profile of each biopharmaceutical container during the cryogenic process, so as to ensure the integrity of materials within each biocontainer by using a pre-installed and pre-sterilized temperature sensor. In some embodiments, the sensor assembly includes a wireless transmitter and is capable of transmitting information regarding the measured reading. In other embodiments, the sensor assembly includes a processing unit, which determines whether the temperature profile is acceptable. In a further embodiment, an indicator is included, such that the processing unit may indicate whether the biopharmaceutical material has been properly frozen. In other embodiments, the sensor assembly also includes a storage element, which is capable of storing various parameters during the freezing process.
Abstract:
In a particle analyzing apparatus including a capillary for passing through a fluid containing particles to be analyzed, an optical system is employed to collect fluorescent light emitted from particles or substances labeled to the particles with improved collection efficiency preserving resolution of the instrument. The optical system may include a first collection lens attached to the capillary and a first reflection element arranged adjacent to the first collection lens configured to reflect fluorescent light of one or more wavelengths. The optical system may include a second collection lens attached to the capillary and a second reflection element arranged adjacent to the second collection lens configured to reflect fluorescent light of one or more wavelengths.
Abstract:
The invention concerns a device comprising: a base (2); a moveable or removable door (20), said device having a closed door position; and in the closed door position, a circuit (8) comprising a bag comprising two flexible films and conveying network connectors, and a press (9) comprising a first shell (16) disposed on said front face (5) of said base (2) and a second shell (17) disposed in said door (20); said bag being clamped between said first shell (16) and said second shell (17) in a state in which conduits of said network for conveying liquid are formed between said films.
Abstract:
The invention concerns a device comprising a base (2) and a door (20), said device having a closed door position in which a circuit (8) of the device comprises a bag comprising two flexible films and connectors of the conveying network, and a press (9) comprising a first shell (16) disposed on a front face (5) of said base (2) and a second shell (17) disposed in said door (20); and a hinge system hinging said door (20) relative to said base (2), and disposed only on one side of said door (20) so as to form lateral clearances between said door (20) and said base (2) over the rest of a perimeter of said door (20).
Abstract:
The present invention relates to chromatography matrices including ligands based on one or more domains of immunoglobulin-binding proteins such as, Staphylooccus aureus Protein A (SpA), as well as methods of using the same.
Abstract:
A method of analyzing pulses from a flow cytometer in which particles in a fluid pass through an excitation volume of an electromagnetic radiation and interact with the electromagnetic radiation to generate signals in the form of pulses includes generating a time-dependent pulse indicative of the characteristics of one or more particles passing through the excitation volume of the electromagnetic radiation, determining a measurement window by selecting a portion of the pulse with a starting point and an ending point above a predetermined value, and calculating a first derivative of the pulse with respect to time over the measurement window.
Abstract:
The device for spraying a reagent onto a support (81) adapted to retain microorganisms on a predetermined surface (82), comprises a spraying bell (3) as well as a nozzle (71) for emitting a jet of droplets of said reagent into a spraying chamber (34) comprised by said bell (3), said device also comprising an absorbent pad (5) mounted against said bell (3) transversely to said jet and closing said chamber (34) from the opposite side to said nozzle (71) with the exception of a circular central opening (51) provided in said pad (5), the diameter of said central opening (51) being adapted to enable a portion of said jet, when said device faces said support (81) and is at a predetermined distance therefrom, to pass through said central opening (51) over its entire area and be deposited on the whole of said predetermined surface (82) of said support (81).
Abstract:
Underdrain design for a multiwell device that when fixed to the device (either as an integral or removable component thereof), allows for adequate venting during filtration, minimizes or prevents air lock, and has improved structural integrity. Also disclosed is a laboratory device designed particularly for a multiplate format that includes a plate or tray having a plurality of wells, and an underdrain in fluid communication with each of the plurality of wells. The underdrain can be a separate, removable piece, or can be an integral unitary structure with the plate or tray forming a one-piece design. The design is preferably in compliance with SBS format.
Abstract:
A take-off needle comprises a hollow lance having a distal end adapted to perform a insertion operation, said hollow lance being connected to at least one pipe provided with a spigot for it to be connected to a tube, and comprising a body for holding the hollow lance and pipe relative to each other such that the spigot projects from the holding body, said needle timber comprising two flanges held on respective sides of and spaced from the holding body by virtue of a spacer disposed between each flange and the holding body, said flanges extending in a longitudinal direction from the spigot to the vicinity of the proximal end of the hollow lance, the width of each flange being greater than the width of the portion of the holding body facing the flanges.
Abstract:
A valved microfluidics device, microfluidics cell-culture device and system incorporating the devices are disclosed. The valved microfluidics device includes a substrate, a microchannel through which liquid can be moved from one station to another within the device, and a pneumatic microvalve adapted to be switched between open and closed states to control the flow of fluid through a microchannel. The microvalve is formed of three flexible membranes, one of which is responsive to pneumatic pressure applied to the valve and the other two of which deform to produce a more sealable channel cross-section. The cell culture device provides valving to allow controlled loading of cells into the individual well of the device, and exchange of cell-culture components in the wells.