Abstract:
A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a conductive layer having a plurality of recesses and a patterned solder resist layer on the conductive layer are provided, wherein the patterned solder resist layer covers the recesses of the conductive layer. A plurality of chips are bonded onto the patterned solder resist layer such that the patterned solder resist layer is between the chips and the conductive layer. The chips are electrically connected to the conductive layer by a plurality of bonding wires. At least one molding compound is formed to encapsulate the conductive layer, the patterned solder resist layer, the chips and the bonding wires. A part of the conductive layer uncovered by the patterned solder resist layer is removed so as to form a patterned conductive layer. Then, the molding compound and the patterned conductive layer are separated.
Abstract:
A manufacturing process for a chip package structure is provided. First, a patterned conductive layer having a plurality of first openings and a first patterned solder resist layer on the patterned conductive layer are provided. A second patterned solder resist layer is formed on the patterned conductive layer such that the first patterned solder resist layer and the second patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. Chips are bonded onto the first patterned solder resist layer such that the first patterned solder resist layer is between the chips and the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires passing through the first openings. At least one molding compound is formed and the molding compound, the first patterned solder resist layer and the second patterned solder resist layer are separated.
Abstract:
A leadframe employed by a leadless package comprises a plurality of package units and an adhesive tape. Each of the package units has a die pad with a plurality of openings and a plurality of pins disposed in the plurality of openings. The adhesive tape is adhered to the surfaces of the plurality of package units and fixes the die pad and the plurality of pins.
Abstract:
To improve the yield, lifetime and driving voltage of the micro scratch drive actuator (SDA), this invention proposes a novel layout design including the etch holes and flange structure designs.Once the etch holes added to the layout of conventional SDA plate, the releasing of structure layer can be accelerated and the accumulated residual charges in the front end of SDA plate is reduced. In this innovative design, a longer lifetime and lower driving voltage of the SDA device can be achieved. On the other hand, adding the flange structure design in the corner of the beam-to-plate conjunction can improve the flexural rigidity of the narrow polysilicon supporting beam which will further enhance the yield of the SDA device and reduce the crack failure under actuating situation.
Abstract:
Based on the voltage-division theory, this invention proposes a new method to decrease the driving voltage of the micro scratch drive actuator (SDA) by using an ultra-low resistivity silicon wafer as substrate. This patent has compared two SDA actuators with the same layout and fabricating processes but under different resistivity of substrate. The SDA fabricated on the ultra-low resistivity silicon wafer has demonstrated a lower driving voltage of only about 4˜12 Vo-p. However, the conventional SDA using normal silicon wafer needs higher driving voltage (30˜75 Vo-p), thus has lower probability for commercial applications. On the other hand, this invention presents a new SDA process to overcome the inherent 2 μm line-width limitation of conventional mask aligner with 4360 Å UV wavelength light source (g-line) and further to reduce the driving voltage of SDA.
Abstract:
An automatic multimedia searching method and the multimedia downloading system thereof are provided, which are capable of increasing user's convenience on multimedia searching and downloading events. The method includes the following steps. First, an electronic device which stores a multimedia file and a data source connection are provided. Next, a multimedia file is played. When playing the multimedia file, the electronic device automatically searches the data source for multimedia files having the same content as the content of the information tag in the multimedia file. Finally, the found multimedia files are displayed on the electronic device.
Abstract:
A dual-layer recordable optical disc includes a first recording layer and a second recording layer disposed on the first recording layer. The first recording layer is made of organic material, and the second recording layer is made of inorganic material. The optical disc may further includes a first substrate, a second substrate and a bonding layer. The first recording layer includes a dye recording layer disposed on the first substrate, and a first reflection layer disposed on the dye recording layer, whereas the second recording layer includes an inorganic recording layer and a second reflection layer disposed on the inorganic recording layer. In addition, the second substrate is disposed on the second reflection layer, and the bonding layer is disposed between the first reflection layer and the inorganic recording layer. A manufacturing process of the optical disc is also provided to increase production yield and lower manufacturing cost.
Abstract:
A method and structure for intensifying track seeking signals from an optical disk, in particular, a recordable digital versatile disk (DVD-R). With the addition of an optical correction layer between a dye material layer and a reflection layer inside the DVD-R, track-seeking signals of the optical disk are intensified and recording quality of the optical disk is improved. The optical correction layer is a transparent or semi-transparent layer made from inorganic materials. The optical correction layer is formed over the dye material layer in a sputtering process.
Abstract:
An embodiment of the disclosure includes a method of dicing a semiconductor structure. A device layer on a semiconductor substrate is provided. The device layer has a first chip region and a second chip region. A scribe line region is between the first chip region and the second chip region. A protective layer is formed over the device layer thereby over the semiconductor substrate. The protective layer on the scribe line region is laser sawn to form a notch. The notch extends into the semiconductor substrate and the protective layer is formed to cover a portion of the notch. A mechanically sawing is performed through the portion of the protective layer and the substrate to separate the first chip region and the second chip region.
Abstract:
A chip package including a thermal enhanced plate, contacts around the thermal enhanced plate and electrically insulated from the thermal enhanced plate, a film-like circuit layer disposed on the contacts and the thermal enhanced plate, a conductive adhesive layer, a first molding, and at least one chip disposed on the film-like circuit layer is provided. The conductive adhesive layer is disposed between the contacts and the film-like circuit layer electrically connected to the contacts through the conductive adhesive layer. The chip has a back surface, an active surface and many bumps disposed thereon, and the chip is electrically connected to the film-like circuit layer via the bumps. The first molding at least encapsulates a portion of the thermal enhanced plate, the conductive adhesive layer, parts of the contacts and at least a portion of the film-like circuit layer. Therefore, heat dissipation efficiency of the light emitting chip package is improved.